Ginkgo Generated from branch based on main. Ginkgo version 1.10.0
A numerical linear algebra library targeting many-core architectures
Loading...
Searching...
No Matches
The preconditioned-solver program

The preconditioned solver example.

This example depends on simple-solver.

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

Introduction

About the example

The commented program

}

Figure out where to run the code

const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"omp", [] { return gko::OmpExecutor::create(); }},
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
static std::shared_ptr< CudaExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_cuda_alloc_mode, CUstream_st *stream=nullptr)
Creates a new CudaExecutor.
static std::shared_ptr< DpcppExecutor > create(int device_id, std::shared_ptr< Executor > master, std::string device_type="all", dpcpp_queue_property property=dpcpp_queue_property::in_order)
Creates a new DpcppExecutor.
static std::shared_ptr< HipExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_hip_alloc_mode, CUstream_st *stream=nullptr)
Creates a new HipExecutor.
static std::shared_ptr< OmpExecutor > create(std::shared_ptr< CpuAllocatorBase > alloc=std::make_shared< CpuAllocator >())
Creates a new OmpExecutor.
Definition executor.hpp:1396

executor where Ginkgo will perform the computation

const auto exec = exec_map.at(executor_string)(); // throws if not valid

Read data

auto A = share(gko::read<mtx>(std::ifstream("data/A.mtx"), exec));
auto b = gko::read<vec>(std::ifstream("data/b.mtx"), exec);
auto x = gko::read<vec>(std::ifstream("data/x0.mtx"), exec);
const RealValueType reduction_factor{1e-7};
std::unique_ptr< MatrixType > read(StreamType &&is, MatrixArgs &&... args)
Reads a matrix stored in matrix market format from an input stream.
Definition mtx_io.hpp:159

Create solver factory

auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(20u),
gko::stop::ResidualNorm<ValueType>::build()
.with_reduction_factor(reduction_factor))

Add preconditioner, these 2 lines are the only difference from the simple solver example

.with_preconditioner(bj::build().with_max_block_size(8u))
.on(exec);

Create solver

auto solver = solver_gen->generate(A);

Solve system

solver->apply(b, x);

Print solution

std::cout << "Solution (x):\n";
write(std::cout, x);

Calculate residual

auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto res = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Residual norm sqrt(r^T r):\n";
write(std::cout, res);
}
std::unique_ptr< Matrix > initialize(size_type stride, std::initializer_list< typename Matrix::value_type > vals, std::shared_ptr< const Executor > exec, TArgs &&... create_args)
Creates and initializes a column-vector.
Definition dense.hpp:1574
void write(StreamType &&os, MatrixPtrType &&matrix, layout_type layout=detail::mtx_io_traits< std::remove_cv_t< detail::pointee< MatrixPtrType > > >::default_layout)
Writes a matrix into an output stream in matrix market format.
Definition mtx_io.hpp:295

Results

This is the expected output:

Solution (x):
%%MatrixMarket matrix array real general
19 1
0.252218
0.108645
0.0662811
0.0630433
0.0384088
0.0396536
0.0402648
0.0338935
0.0193098
0.0234653
0.0211499
0.0196413
0.0199151
0.0181674
0.0162722
0.0150714
0.0107016
0.0121141
0.0123025
Residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
4.82005e-08

Comments about programming and debugging

The plain program

#include <fstream>
#include <iostream>
#include <map>
#include <string>
#include <ginkgo/ginkgo.hpp>
int main(int argc, char* argv[])
{
using ValueType = double;
using RealValueType = gko::remove_complex<ValueType>;
using IndexType = int;
std::cout << gko::version_info::get() << std::endl;
if (argc == 2 && (std::string(argv[1]) == "--help")) {
std::cerr << "Usage: " << argv[0] << " [executor]" << std::endl;
std::exit(-1);
}
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"omp", [] { return gko::OmpExecutor::create(); }},
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)(); // throws if not valid
auto A = share(gko::read<mtx>(std::ifstream("data/A.mtx"), exec));
auto b = gko::read<vec>(std::ifstream("data/b.mtx"), exec);
auto x = gko::read<vec>(std::ifstream("data/x0.mtx"), exec);
const RealValueType reduction_factor{1e-7};
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(20u),
gko::stop::ResidualNorm<ValueType>::build()
.with_reduction_factor(reduction_factor))
.with_preconditioner(bj::build().with_max_block_size(8u))
.on(exec);
auto solver = solver_gen->generate(A);
solver->apply(b, x);
std::cout << "Solution (x):\n";
write(std::cout, x);
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto res = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(res);
std::cout << "Residual norm sqrt(r^T r):\n";
write(std::cout, res);
}
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition csr.hpp:126
Dense is a matrix format which explicitly stores all values of the matrix.
Definition dense.hpp:120
A block-Jacobi preconditioner is a block-diagonal linear operator, obtained by inverting the diagonal...
Definition jacobi.hpp:190
CG or the conjugate gradient method is an iterative type Krylov subspace method which is suitable for...
Definition cg.hpp:50
static const version_info & get()
Returns an instance of version_info.
Definition version.hpp:139
@ solver
Solver events.
Definition profiler_hook.hpp:34
constexpr T one()
Returns the multiplicative identity for T.
Definition math.hpp:654
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition math.hpp:264
detail::shared_type< OwningPointer > share(OwningPointer &&p)
Marks the object pointed to by p as shared.
Definition utils_helper.hpp:224