
GNU MP
The GNU Multiple Precision Arithmetic Library

Edition 6.2.1
14 November 2020

by Torbjörn Granlund and the GMP development team

This manual describes how to install and use the GNU multiple precision arithmetic library,
version 6.2.1.

Copyright 1991, 1993-2016, 2018-2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “A GNU
Manual”, and with the Back-Cover Texts being “You have freedom to copy and modify this
GNU Manual, like GNU software”. A copy of the license is included in Appendix C [GNU Free
Documentation License], page 132.

i

Table of Contents

GNU MP Copying Conditions . 1

1 Introduction to GNU MP . 2
1.1 How to use this Manual . 2

2 Installing GMP . 3
2.1 Build Options . 3
2.2 ABI and ISA . 8
2.3 Notes for Package Builds . 11
2.4 Notes for Particular Systems . 12
2.5 Known Build Problems . 14
2.6 Performance optimization . 15

3 GMP Basics . 17
3.1 Headers and Libraries . 17
3.2 Nomenclature and Types . 17
3.3 Function Classes . 18
3.4 Variable Conventions . 18
3.5 Parameter Conventions . 19
3.6 Memory Management . 20
3.7 Reentrancy . 20
3.8 Useful Macros and Constants . 21
3.9 Compatibility with older versions . 21
3.10 Demonstration programs . 21
3.11 Efficiency . 22
3.12 Debugging . 24
3.13 Profiling . 26
3.14 Autoconf . 27
3.15 Emacs . 28

4 Reporting Bugs . 29

5 Integer Functions . 30
5.1 Initialization Functions . 30
5.2 Assignment Functions . 31
5.3 Combined Initialization and Assignment Functions . 31
5.4 Conversion Functions . 32
5.5 Arithmetic Functions . 33
5.6 Division Functions . 34
5.7 Exponentiation Functions . 36
5.8 Root Extraction Functions . 36
5.9 Number Theoretic Functions . 37
5.10 Comparison Functions . 39
5.11 Logical and Bit Manipulation Functions . 40
5.12 Input and Output Functions . 41
5.13 Random Number Functions . 42

ii GNU MP 6.2.1

5.14 Integer Import and Export . 42
5.15 Miscellaneous Functions . 44
5.16 Special Functions . 44

6 Rational Number Functions . 47
6.1 Initialization and Assignment Functions . 47
6.2 Conversion Functions . 48
6.3 Arithmetic Functions . 48
6.4 Comparison Functions . 49
6.5 Applying Integer Functions to Rationals . 50
6.6 Input and Output Functions . 50

7 Floating-point Functions . 52
7.1 Initialization Functions . 52
7.2 Assignment Functions . 54
7.3 Combined Initialization and Assignment Functions . 55
7.4 Conversion Functions . 55
7.5 Arithmetic Functions . 56
7.6 Comparison Functions . 57
7.7 Input and Output Functions . 57
7.8 Miscellaneous Functions . 58

8 Low-level Functions . 60
8.1 Low-level functions for cryptography . 67
8.2 Nails . 70

9 Random Number Functions . 72
9.1 Random State Initialization . 72
9.2 Random State Seeding . 73
9.3 Random State Miscellaneous . 73

10 Formatted Output . 74
10.1 Format Strings . 74
10.2 Functions . 76
10.3 C++ Formatted Output . 77

11 Formatted Input . 79
11.1 Formatted Input Strings . 79
11.2 Formatted Input Functions . 81
11.3 C++ Formatted Input . 81

12 C++ Class Interface . 83
12.1 C++ Interface General . 83
12.2 C++ Interface Integers . 84
12.3 C++ Interface Rationals . 86
12.4 C++ Interface Floats . 87
12.5 C++ Interface Random Numbers . 89
12.6 C++ Interface Limitations . 90

13 Custom Allocation . 92

iii

14 Language Bindings . 94

15 Algorithms . 96
15.1 Multiplication . 96

15.1.1 Basecase Multiplication . 96
15.1.2 Karatsuba Multiplication . 97
15.1.3 Toom 3-Way Multiplication . 98
15.1.4 Toom 4-Way Multiplication . 100
15.1.5 Higher degree Toom’n’half . 100
15.1.6 FFT Multiplication . 100
15.1.7 Other Multiplication . 102
15.1.8 Unbalanced Multiplication . 102

15.2 Division Algorithms . 103
15.2.1 Single Limb Division . 103
15.2.2 Basecase Division . 103
15.2.3 Divide and Conquer Division . 104
15.2.4 Block-Wise Barrett Division . 104
15.2.5 Exact Division . 104
15.2.6 Exact Remainder . 105
15.2.7 Small Quotient Division . 106

15.3 Greatest Common Divisor . 106
15.3.1 Binary GCD . 106
15.3.2 Lehmer’s algorithm . 107
15.3.3 Subquadratic GCD . 107
15.3.4 Extended GCD . 108
15.3.5 Jacobi Symbol . 108

15.4 Powering Algorithms . 109
15.4.1 Normal Powering . 109
15.4.2 Modular Powering . 109

15.5 Root Extraction Algorithms . 109
15.5.1 Square Root . 110
15.5.2 Nth Root . 110
15.5.3 Perfect Square . 111
15.5.4 Perfect Power . 111

15.6 Radix Conversion . 111
15.6.1 Binary to Radix . 111
15.6.2 Radix to Binary . 112

15.7 Other Algorithms . 113
15.7.1 Prime Testing . 113
15.7.2 Factorial . 113
15.7.3 Binomial Coefficients . 114
15.7.4 Fibonacci Numbers . 114
15.7.5 Lucas Numbers . 115
15.7.6 Random Numbers . 115

15.8 Assembly Coding . 116
15.8.1 Code Organisation . 116
15.8.2 Assembly Basics . 116
15.8.3 Carry Propagation . 117
15.8.4 Cache Handling . 117
15.8.5 Functional Units . 118
15.8.6 Floating Point . 118
15.8.7 SIMD Instructions . 119
15.8.8 Software Pipelining . 119

iv GNU MP 6.2.1

15.8.9 Loop Unrolling . 120
15.8.10 Writing Guide . 120

16 Internals . 122
16.1 Integer Internals . 122
16.2 Rational Internals . 122
16.3 Float Internals . 123
16.4 Raw Output Internals . 125
16.5 C++ Interface Internals . 125

Appendix A Contributors . 128

Appendix B References . 130
B.1 Books . 130
B.2 Papers . 130

Appendix C GNU Free Documentation License 132

Concept Index . 139

Function and Type Index . 143

1

GNU MP Copying Conditions

This library is free; this means that everyone is free to use it and free to redistribute it on a free
basis. The library is not in the public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further sharing
any version of this library that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the library,
that you receive source code or else can get it if you want it, that you can change this library
or use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of the GNU MP library, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the GNU MP library. If it is modified by someone else and passed on, we want
their recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

More precisely, the GNU MP library is dual licensed, under the conditions of the GNU Lesser
General Public License version 3 (see COPYING.LESSERv3), or the GNU General Public License
version 2 (see COPYINGv2). This is the recipient’s choice, and the recipient also has the additional
option of applying later versions of these licenses. (The reason for this dual licensing is to make
it possible to use the library with programs which are licensed under GPL version 2, but which
for historical or other reasons do not allow use under later versions of the GPL).

Programs which are not part of the library itself, such as demonstration programs and the
GMP testsuite, are licensed under the terms of the GNU General Public License version 3 (see
COPYINGv3), or any later version.

2 GNU MP 6.2.1

1 Introduction to GNU MP

GNUMP is a portable library written in C for arbitrary precision arithmetic on integers, rational
numbers, and floating-point numbers. It aims to provide the fastest possible arithmetic for all
applications that need higher precision than is directly supported by the basic C types.

Many applications use just a few hundred bits of precision; but some applications may need
thousands or even millions of bits. GMP is designed to give good performance for both, by
choosing algorithms based on the sizes of the operands, and by carefully keeping the overhead
at a minimum.

The speed of GMP is achieved by using fullwords as the basic arithmetic type, by using sophis-
ticated algorithms, by including carefully optimized assembly code for the most common inner
loops for many different CPUs, and by a general emphasis on speed (as opposed to simplicity
or elegance).

There is assembly code for these CPUs: ARM Cortex-A9, Cortex-A15, and generic ARM, DEC
Alpha 21064, 21164, and 21264, AMD K8 and K10 (sold under many brands, e.g. Athlon64,
Phenom, Opteron) Bulldozer, and Bobcat, Intel Pentium, Pentium Pro/II/III, Pentium 4, Core2,
Nehalem, Sandy bridge, Haswell, generic x86, Intel IA-64, Motorola/IBM PowerPC 32 and 64
such as POWER970, POWER5, POWER6, and POWER7, MIPS 32-bit and 64-bit, SPARC
32-bit ad 64-bit with special support for all UltraSPARC models. There is also assembly code
for many obsolete CPUs.

For up-to-date information on GMP, please see the GMP web pages at

https://gmplib.org/

The latest version of the library is available at

https://ftp.gnu.org/gnu/gmp/

Many sites around the world mirror ‘ftp.gnu.org’, please use a mirror near you, see https://
www.gnu.org/order/ftp.html for a full list.

There are three public mailing lists of interest. One for release announcements, one for general
questions and discussions about usage of the GMP library and one for bug reports. For more
information, see

https://gmplib.org/mailman/listinfo/.

The proper place for bug reports is gmp-bugs@gmplib.org. See Chapter 4 [Reporting Bugs],
page 29, for information about reporting bugs.

1.1 How to use this Manual

Everyone should read Chapter 3 [GMP Basics], page 17. If you need to install the library
yourself, then read Chapter 2 [Installing GMP], page 3. If you have a system with multiple
ABIs, then read Section 2.2 [ABI and ISA], page 8, for the compiler options that must be used
on applications.

The rest of the manual can be used for later reference, although it is probably a good idea to
glance through it.

https://gmplib.org/
https://ftp.gnu.org/gnu/gmp/
https://www.gnu.org/order/ftp.html
https://www.gnu.org/order/ftp.html
https://gmplib.org/mailman/listinfo/
mailto:gmp-bugs@gmplib.org

3

2 Installing GMP

GMP has an autoconf/automake/libtool based configuration system. On a Unix-like system a
basic build can be done with

./configure

make

Some self-tests can be run with

make check

And you can install (under /usr/local by default) with

make install

If you experience problems, please report them to gmp-bugs@gmplib.org. See Chapter 4 [Re-
porting Bugs], page 29, for information on what to include in useful bug reports.

2.1 Build Options

All the usual autoconf configure options are available, run ‘./configure --help’ for a summary.
The file INSTALL.autoconf has some generic installation information too.

Tools ‘configure’ requires various Unix-like tools. See Section 2.4 [Notes for Particular
Systems], page 12, for some options on non-Unix systems.

It might be possible to build without the help of ‘configure’, certainly all the code
is there, but unfortunately you’ll be on your own.

Build Directory
To compile in a separate build directory, cd to that directory, and prefix the configure
command with the path to the GMP source directory. For example

cd /my/build/dir

/my/sources/gmp-6.2.1/configure

Not all ‘make’ programs have the necessary features (VPATH) to support this. In
particular, SunOS and Slowaris make have bugs that make them unable to build in
a separate directory. Use GNU make instead.

--prefix and --exec-prefix

The --prefix option can be used in the normal way to direct GMP to install under
a particular tree. The default is ‘/usr/local’.

--exec-prefix can be used to direct architecture-dependent files like libgmp.a to
a different location. This can be used to share architecture-independent parts like
the documentation, but separate the dependent parts. Note however that gmp.h is
architecture-dependent since it encodes certain aspects of libgmp, so it will be nec-
essary to ensure both $prefix/include and $exec_prefix/include are available
to the compiler.

--disable-shared, --disable-static
By default both shared and static libraries are built (where possible), but one or
other can be disabled. Shared libraries result in smaller executables and permit code
sharing between separate running processes, but on some CPUs are slightly slower,
having a small cost on each function call.

Native Compilation, --build=CPU-VENDOR-OS
For normal native compilation, the system can be specified with ‘--build’. By
default ‘./configure’ uses the output from running ‘./config.guess’. On some

mailto:gmp-bugs@gmplib.org

4 GNU MP 6.2.1

systems ‘./config.guess’ can determine the exact CPU type, on others it will be
necessary to give it explicitly. For example,

./configure --build=ultrasparc-sun-solaris2.7

In all cases the ‘OS’ part is important, since it controls how libtool generates shared
libraries. Running ‘./config.guess’ is the simplest way to see what it should be,
if you don’t know already.

Cross Compilation, --host=CPU-VENDOR-OS
When cross-compiling, the system used for compiling is given by ‘--build’ and the
system where the library will run is given by ‘--host’. For example when using a
FreeBSD Athlon system to build GNU/Linux m68k binaries,

./configure --build=athlon-pc-freebsd3.5 --host=m68k-mac-linux-gnu

Compiler tools are sought first with the host system type as a prefix. For example
m68k-mac-linux-gnu-ranlib is tried, then plain ranlib. This makes it possible
for a set of cross-compiling tools to co-exist with native tools. The prefix is the
argument to ‘--host’, and this can be an alias, such as ‘m68k-linux’. But note
that tools don’t have to be setup this way, it’s enough to just have a PATH with a
suitable cross-compiling cc etc.

Compiling for a different CPU in the same family as the build system is a form of
cross-compilation, though very possibly this would merely be special options on a
native compiler. In any case ‘./configure’ avoids depending on being able to run
code on the build system, which is important when creating binaries for a newer
CPU since they very possibly won’t run on the build system.

In all cases the compiler must be able to produce an executable (of whatever format)
from a standard C main. Although only object files will go to make up libgmp,
‘./configure’ uses linking tests for various purposes, such as determining what
functions are available on the host system.

Currently a warning is given unless an explicit ‘--build’ is used when cross-
compiling, because it may not be possible to correctly guess the build system type
if the PATH has only a cross-compiling cc.

Note that the ‘--target’ option is not appropriate for GMP. It’s for use when
building compiler tools, with ‘--host’ being where they will run, and ‘--target’
what they’ll produce code for. Ordinary programs or libraries like GMP are only
interested in the ‘--host’ part, being where they’ll run. (Some past versions of
GMP used ‘--target’ incorrectly.)

CPU types
In general, if you want a library that runs as fast as possible, you should configure
GMP for the exact CPU type your system uses. However, this may mean the binaries
won’t run on older members of the family, and might run slower on other members,
older or newer. The best idea is always to build GMP for the exact machine type
you intend to run it on.

The following CPUs have specific support. See configure.ac for details of what
code and compiler options they select.

• Alpha: ‘alpha’, ‘alphaev5’, ‘alphaev56’, ‘alphapca56’, ‘alphapca57’,
‘alphaev6’, ‘alphaev67’, ‘alphaev68’ ‘alphaev7’

• Cray: ‘c90’, ‘j90’, ‘t90’, ‘sv1’

• HPPA: ‘hppa1.0’, ‘hppa1.1’, ‘hppa2.0’, ‘hppa2.0n’, ‘hppa2.0w’, ‘hppa64’

• IA-64: ‘ia64’, ‘itanium’, ‘itanium2’

• MIPS: ‘mips’, ‘mips3’, ‘mips64’

Chapter 2: Installing GMP 5

• Motorola: ‘m68k’, ‘m68000’, ‘m68010’, ‘m68020’, ‘m68030’, ‘m68040’, ‘m68060’,
‘m68302’, ‘m68360’, ‘m88k’, ‘m88110’

• POWER: ‘power’, ‘power1’, ‘power2’, ‘power2sc’

• PowerPC: ‘powerpc’, ‘powerpc64’, ‘powerpc401’, ‘powerpc403’, ‘powerpc405’,
‘powerpc505’, ‘powerpc601’, ‘powerpc602’, ‘powerpc603’, ‘powerpc603e’,
‘powerpc604’, ‘powerpc604e’, ‘powerpc620’, ‘powerpc630’, ‘powerpc740’,
‘powerpc7400’, ‘powerpc7450’, ‘powerpc750’, ‘powerpc801’, ‘powerpc821’,
‘powerpc823’, ‘powerpc860’, ‘powerpc970’

• SPARC: ‘sparc’, ‘sparcv8’, ‘microsparc’, ‘supersparc’, ‘sparcv9’,
‘ultrasparc’, ‘ultrasparc2’, ‘ultrasparc2i’, ‘ultrasparc3’, ‘sparc64’

• x86 family: ‘i386’, ‘i486’, ‘i586’, ‘pentium’, ‘pentiummmx’, ‘pentiumpro’,
‘pentium2’, ‘pentium3’, ‘pentium4’, ‘k6’, ‘k62’, ‘k63’, ‘athlon’, ‘amd64’,
‘viac3’, ‘viac32’

• Other: ‘arm’, ‘sh’, ‘sh2’, ‘vax’,

CPUs not listed will use generic C code.

Generic C Build
If some of the assembly code causes problems, or if otherwise desired, the generic C
code can be selected with the configure --disable-assembly.

Note that this will run quite slowly, but it should be portable and should at least
make it possible to get something running if all else fails.

Fat binary, --enable-fat
Using --enable-fat selects a “fat binary” build on x86, where optimized low level
subroutines are chosen at runtime according to the CPU detected. This means more
code, but gives good performance on all x86 chips. (This option might become
available for more architectures in the future.)

ABI On some systems GMP supports multiple ABIs (application binary interfaces),
meaning data type sizes and calling conventions. By default GMP chooses the
best ABI available, but a particular ABI can be selected. For example

./configure --host=mips64-sgi-irix6 ABI=n32

See Section 2.2 [ABI and ISA], page 8, for the available choices on relevant CPUs,
and what applications need to do.

CC, CFLAGS
By default the C compiler used is chosen from among some likely candidates, with
gcc normally preferred if it’s present. The usual ‘CC=whatever’ can be passed to
‘./configure’ to choose something different.

For various systems, default compiler flags are set based on the CPU and compiler.
The usual ‘CFLAGS="-whatever"’ can be passed to ‘./configure’ to use something
different or to set good flags for systems GMP doesn’t otherwise know.

The ‘CC’ and ‘CFLAGS’ used are printed during ‘./configure’, and can be found
in each generated Makefile. This is the easiest way to check the defaults when
considering changing or adding something.

Note that when ‘CC’ and ‘CFLAGS’ are specified on a system supporting multiple
ABIs it’s important to give an explicit ‘ABI=whatever’, since GMP can’t determine
the ABI just from the flags and won’t be able to select the correct assembly code.

If just ‘CC’ is selected then normal default ‘CFLAGS’ for that compiler will be used
(if GMP recognises it). For example ‘CC=gcc’ can be used to force the use of GCC,
with default flags (and default ABI).

6 GNU MP 6.2.1

CPPFLAGS Any flags like ‘-D’ defines or ‘-I’ includes required by the preprocessor should be set
in ‘CPPFLAGS’ rather than ‘CFLAGS’. Compiling is done with both ‘CPPFLAGS’ and
‘CFLAGS’, but preprocessing uses just ‘CPPFLAGS’. This distinction is because most
preprocessors won’t accept all the flags the compiler does. Preprocessing is done
separately in some configure tests.

CC_FOR_BUILD

Some build-time programs are compiled and run to generate host-specific data ta-
bles. ‘CC_FOR_BUILD’ is the compiler used for this. It doesn’t need to be in any
particular ABI or mode, it merely needs to generate executables that can run. The
default is to try the selected ‘CC’ and some likely candidates such as ‘cc’ and ‘gcc’,
looking for something that works.

No flags are used with ‘CC_FOR_BUILD’ because a simple invocation like ‘cc foo.c’
should be enough. If some particular options are required they can be included as
for instance ‘CC_FOR_BUILD="cc -whatever"’.

C++ Support, --enable-cxx
C++ support in GMP can be enabled with ‘--enable-cxx’, in which case a C++
compiler will be required. As a convenience ‘--enable-cxx=detect’ can be used
to enable C++ support only if a compiler can be found. The C++ support consists
of a library libgmpxx.la and header file gmpxx.h (see Section 3.1 [Headers and
Libraries], page 17).

A separate libgmpxx.la has been adopted rather than having C++ objects within
libgmp.la in order to ensure dynamic linked C programs aren’t bloated by a depen-
dency on the C++ standard library, and to avoid any chance that the C++ compiler
could be required when linking plain C programs.

libgmpxx.la will use certain internals from libgmp.la and can only be expected to
work with libgmp.la from the same GMP version. Future changes to the relevant
internals will be accompanied by renaming, so a mismatch will cause unresolved
symbols rather than perhaps mysterious misbehaviour.

In general libgmpxx.la will be usable only with the C++ compiler that built it, since
name mangling and runtime support are usually incompatible between different
compilers.

CXX, CXXFLAGS
When C++ support is enabled, the C++ compiler and its flags can be set with vari-
ables ‘CXX’ and ‘CXXFLAGS’ in the usual way. The default for ‘CXX’ is the first compiler
that works from a list of likely candidates, with g++ normally preferred when avail-
able. The default for ‘CXXFLAGS’ is to try ‘CFLAGS’, ‘CFLAGS’ without ‘-g’, then for
g++ either ‘-g -O2’ or ‘-O2’, or for other compilers ‘-g’ or nothing. Trying ‘CFLAGS’
this way is convenient when using ‘gcc’ and ‘g++’ together, since the flags for ‘gcc’
will usually suit ‘g++’.

It’s important that the C and C++ compilers match, meaning their startup and
runtime support routines are compatible and that they generate code in the same
ABI (if there’s a choice of ABIs on the system). ‘./configure’ isn’t currently able to
check these things very well itself, so for that reason ‘--disable-cxx’ is the default,
to avoid a build failure due to a compiler mismatch. Perhaps this will change in the
future.

Incidentally, it’s normally not good enough to set ‘CXX’ to the same as ‘CC’. Although
gcc for instance recognises foo.cc as C++ code, only g++ will invoke the linker the
right way when building an executable or shared library from C++ object files.

Chapter 2: Installing GMP 7

Temporary Memory, --enable-alloca=<choice>
GMP allocates temporary workspace using one of the following three methods, which
can be selected with for instance ‘--enable-alloca=malloc-reentrant’.

• ‘alloca’ - C library or compiler builtin.

• ‘malloc-reentrant’ - the heap, in a re-entrant fashion.

• ‘malloc-notreentrant’ - the heap, with global variables.

For convenience, the following choices are also available. ‘--disable-alloca’ is the
same as ‘no’.

• ‘yes’ - a synonym for ‘alloca’.

• ‘no’ - a synonym for ‘malloc-reentrant’.

• ‘reentrant’ - alloca if available, otherwise ‘malloc-reentrant’. This is the
default.

• ‘notreentrant’ - alloca if available, otherwise ‘malloc-notreentrant’.

alloca is reentrant and fast, and is recommended. It actually allocates just small
blocks on the stack; larger ones use malloc-reentrant.

‘malloc-reentrant’ is, as the name suggests, reentrant and thread safe, but
‘malloc-notreentrant’ is faster and should be used if reentrancy is not required.

The two malloc methods in fact use the memory allocation functions selected by mp_

set_memory_functions, these being malloc and friends by default. See Chapter 13
[Custom Allocation], page 92.

An additional choice ‘--enable-alloca=debug’ is available, to help when debugging
memory related problems (see Section 3.12 [Debugging], page 24).

FFT Multiplication, --disable-fft
By default multiplications are done using Karatsuba, 3-way Toom, higher degree
Toom, and Fermat FFT. The FFT is only used on large to very large operands and
can be disabled to save code size if desired.

Assertion Checking, --enable-assert
This option enables some consistency checking within the library. This can be of
use while debugging, see Section 3.12 [Debugging], page 24.

Execution Profiling, --enable-profiling=prof/gprof/instrument
Enable profiling support, in one of various styles, see Section 3.13 [Profiling], page 26.

MPN_PATH Various assembly versions of each mpn subroutines are provided. For a given CPU,
a search is made though a path to choose a version of each. For example ‘sparcv8’
has

MPN_PATH="sparc32/v8 sparc32 generic"

which means look first for v8 code, then plain sparc32 (which is v7), and finally
fall back on generic C. Knowledgeable users with special requirements can specify
a different path. Normally this is completely unnecessary.

Documentation
The source for the document you’re now reading is doc/gmp.texi, in Texinfo format,
see Texinfo.

Info format ‘doc/gmp.info’ is included in the distribution. The usual automake
targets are available to make PostScript, DVI, PDF and HTML (these will require
various TEX and Texinfo tools).

DocBook and XML can be generated by the Texinfo makeinfo program too, see
Section “Options for makeinfo” in Texinfo.

Some supplementary notes can also be found in the doc subdirectory.

8 GNU MP 6.2.1

2.2 ABI and ISA

ABI (Application Binary Interface) refers to the calling conventions between functions, meaning
what registers are used and what sizes the various C data types are. ISA (Instruction Set
Architecture) refers to the instructions and registers a CPU has available.

Some 64-bit ISA CPUs have both a 64-bit ABI and a 32-bit ABI defined, the latter for com-
patibility with older CPUs in the family. GMP supports some CPUs like this in both ABIs. In
fact within GMP ‘ABI’ means a combination of chip ABI, plus how GMP chooses to use it. For
example in some 32-bit ABIs, GMP may support a limb as either a 32-bit long or a 64-bit long
long.

By default GMP chooses the best ABI available for a given system, and this generally gives
significantly greater speed. But an ABI can be chosen explicitly to make GMP compatible with
other libraries, or particular application requirements. For example,

./configure ABI=32

In all cases it’s vital that all object code used in a given program is compiled for the same ABI.

Usually a limb is implemented as a long. When a long long limb is used this is encoded in the
generated gmp.h. This is convenient for applications, but it does mean that gmp.h will vary, and
can’t be just copied around. gmp.h remains compiler independent though, since all compilers
for a particular ABI will be expected to use the same limb type.

Currently no attempt is made to follow whatever conventions a system has for installing library
or header files built for a particular ABI. This will probably only matter when installing multiple
builds of GMP, and it might be as simple as configuring with a special ‘libdir’, or it might
require more than that. Note that builds for different ABIs need to done separately, with a fresh
./configure and make each.

AMD64 (‘x86_64’)
On AMD64 systems supporting both 32-bit and 64-bit modes for applications, the
following ABI choices are available.

‘ABI=64’ The 64-bit ABI uses 64-bit limbs and pointers and makes full use of
the chip architecture. This is the default. Applications will usually not
need special compiler flags, but for reference the option is

gcc -m64

‘ABI=32’ The 32-bit ABI is the usual i386 conventions. This will be slower, and
is not recommended except for inter-operating with other code not yet
64-bit capable. Applications must be compiled with

gcc -m32

(In GCC 2.95 and earlier there’s no ‘-m32’ option, it’s the only mode.)

‘ABI=x32’ The x32 ABI uses 64-bit limbs but 32-bit pointers. Like the 64-bit ABI,
it makes full use of the chip’s arithmetic capabilities. This ABI is not
supported by all operating systems.

gcc -mx32

Chapter 2: Installing GMP 9

HPPA 2.0 (‘hppa2.0*’, ‘hppa64’)

‘ABI=2.0w’
The 2.0w ABI uses 64-bit limbs and pointers and is available on HP-UX
11 or up. Applications must be compiled with

gcc [built for 2.0w]

cc +DD64

‘ABI=2.0n’
The 2.0n ABI means the 32-bit HPPA 1.0 ABI and all its normal calling
conventions, but with 64-bit instructions permitted within functions.
GMP uses a 64-bit long long for a limb. This ABI is available on
hppa64 GNU/Linux and on HP-UX 10 or higher. Applications must be
compiled with

gcc [built for 2.0n]

cc +DA2.0 +e

Note that current versions of GCC (eg. 3.2) don’t generate 64-bit in-
structions for long long operations and so may be slower than for 2.0w.
(The GMP assembly code is the same though.)

‘ABI=1.0’ HPPA 2.0 CPUs can run all HPPA 1.0 and 1.1 code in the 32-bit HPPA
1.0 ABI. No special compiler options are needed for applications.

All three ABIs are available for CPU types ‘hppa2.0w’, ‘hppa2.0’ and ‘hppa64’, but
for CPU type ‘hppa2.0n’ only 2.0n or 1.0 are considered.

Note that GCC on HP-UX has no options to choose between 2.0n and 2.0w modes,
unlike HP cc. Instead it must be built for one or the other ABI. GMP will detect
how it was built, and skip to the corresponding ‘ABI’.

IA-64 under HP-UX (‘ia64*-*-hpux*’, ‘itanium*-*-hpux*’)
HP-UX supports two ABIs for IA-64. GMP performance is the same in both.

‘ABI=32’ In the 32-bit ABI, pointers, ints and longs are 32 bits and GMP uses
a 64 bit long long for a limb. Applications can be compiled without
any special flags since this ABI is the default in both HP C and GCC,
but for reference the flags are

gcc -milp32

cc +DD32

‘ABI=64’ In the 64-bit ABI, longs and pointers are 64 bits and GMP uses a long

for a limb. Applications must be compiled with

gcc -mlp64

cc +DD64

On other IA-64 systems, GNU/Linux for instance, ‘ABI=64’ is the only choice.

MIPS under IRIX 6 (‘mips*-*-irix[6789]’)
IRIX 6 always has a 64-bit MIPS 3 or better CPU, and supports ABIs o32, n32,
and 64. n32 or 64 are recommended, and GMP performance will be the same in
each. The default is n32.

‘ABI=o32’ The o32 ABI is 32-bit pointers and integers, and no 64-bit operations.
GMP will be slower than in n32 or 64, this option only exists to support
old compilers, eg. GCC 2.7.2. Applications can be compiled with no
special flags on an old compiler, or on a newer compiler with

gcc -mabi=32

10 GNU MP 6.2.1

cc -32

‘ABI=n32’ The n32 ABI is 32-bit pointers and integers, but with a 64-bit limb
using a long long. Applications must be compiled with

gcc -mabi=n32

cc -n32

‘ABI=64’ The 64-bit ABI is 64-bit pointers and integers. Applications must be
compiled with

gcc -mabi=64

cc -64

Note that MIPS GNU/Linux, as of kernel version 2.2, doesn’t have the necessary
support for n32 or 64 and so only gets a 32-bit limb and the MIPS 2 code.

PowerPC 64 (‘powerpc64’, ‘powerpc620’, ‘powerpc630’, ‘powerpc970’, ‘power4’, ‘power5’)

‘ABI=mode64’
The AIX 64 ABI uses 64-bit limbs and pointers and is the default on
PowerPC 64 ‘*-*-aix*’ systems. Applications must be compiled with

gcc -maix64

xlc -q64

On 64-bit GNU/Linux, BSD, and Mac OS X/Darwin systems, the ap-
plications must be compiled with

gcc -m64

‘ABI=mode32’
The ‘mode32’ ABI uses a 64-bit long long limb but with the chip still in
32-bit mode and using 32-bit calling conventions. This is the default for
systems where the true 64-bit ABI is unavailable. No special compiler
options are typically needed for applications. This ABI is not available
under AIX.

‘ABI=32’ This is the basic 32-bit PowerPC ABI, with a 32-bit limb. No special
compiler options are needed for applications.

GMP’s speed is greatest for the ‘mode64’ ABI, the ‘mode32’ ABI is 2nd best. In
‘ABI=32’ only the 32-bit ISA is used and this doesn’t make full use of a 64-bit chip.

Sparc V9 (‘sparc64’, ‘sparcv9’, ‘ultrasparc*’)

‘ABI=64’ The 64-bit V9 ABI is available on the various BSD sparc64 ports, recent
versions of Sparc64 GNU/Linux, and Solaris 2.7 and up (when the kernel
is in 64-bit mode). GCC 3.2 or higher, or Sun cc is required. On
GNU/Linux, depending on the default gcc mode, applications must be
compiled with

gcc -m64

On Solaris applications must be compiled with

gcc -m64 -mptr64 -Wa,-xarch=v9 -mcpu=v9

cc -xarch=v9

On the BSD sparc64 systems no special options are required, since 64-
bits is the only ABI available.

‘ABI=32’ For the basic 32-bit ABI, GMP still uses as much of the V9 ISA as it
can. In the Sun documentation this combination is known as “v8plus”.

Chapter 2: Installing GMP 11

On GNU/Linux, depending on the default gcc mode, applications may
need to be compiled with

gcc -m32

On Solaris, no special compiler options are required for applications,
though using something like the following is recommended. (gcc 2.8
and earlier only support ‘-mv8’ though.)

gcc -mv8plus

cc -xarch=v8plus

GMP speed is greatest in ‘ABI=64’, so it’s the default where available. The speed
is partly because there are extra registers available and partly because 64-bits is
considered the more important case and has therefore had better code written for
it.

Don’t be confused by the names of the ‘-m’ and ‘-x’ compiler options, they’re called
‘arch’ but effectively control both ABI and ISA.

On Solaris 2.6 and earlier, only ‘ABI=32’ is available since the kernel doesn’t save
all registers.

On Solaris 2.7 with the kernel in 32-bit mode, a normal native build will reject
‘ABI=64’ because the resulting executables won’t run. ‘ABI=64’ can still be built if
desired by making it look like a cross-compile, for example

./configure --build=none --host=sparcv9-sun-solaris2.7 ABI=64

2.3 Notes for Package Builds

GMP should present no great difficulties for packaging in a binary distribution.

Libtool is used to build the library and ‘-version-info’ is set appropriately, having started
from ‘3:0:0’ in GMP 3.0 (see Section “Library interface versions” in GNU Libtool).

The GMP 4 series will be upwardly binary compatible in each release and will be upwardly
binary compatible with all of the GMP 3 series. Additional function interfaces may be added
in each release, so on systems where libtool versioning is not fully checked by the loader an
auxiliary mechanism may be needed to express that a dynamic linked application depends on a
new enough GMP.

An auxiliary mechanism may also be needed to express that libgmpxx.la (from --enable-cxx,
see Section 2.1 [Build Options], page 3) requires libgmp.la from the same GMP version, since
this is not done by the libtool versioning, nor otherwise. A mismatch will result in unresolved
symbols from the linker, or perhaps the loader.

When building a package for a CPU family, care should be taken to use ‘--host’ (or ‘--build’)
to choose the least common denominator among the CPUs which might use the package. For
example this might mean plain ‘sparc’ (meaning V7) for SPARCs.

For x86s, --enable-fat sets things up for a fat binary build, making a runtime selection of
optimized low level routines. This is a good choice for packaging to run on a range of x86 chips.

Users who care about speed will want GMP built for their exact CPU type, to make best use
of the available optimizations. Providing a way to suitably rebuild a package may be useful.
This could be as simple as making it possible for a user to omit ‘--build’ (and ‘--host’) so
‘./config.guess’ will detect the CPU. But a way to manually specify a ‘--build’ will be
wanted for systems where ‘./config.guess’ is inexact.

On systems with multiple ABIs, a packaged build will need to decide which among the choices
is to be provided, see Section 2.2 [ABI and ISA], page 8. A given run of ‘./configure’ etc will

12 GNU MP 6.2.1

only build one ABI. If a second ABI is also required then a second run of ‘./configure’ etc
must be made, starting from a clean directory tree (‘make distclean’).

As noted under “ABI and ISA”, currently no attempt is made to follow system conventions
for install locations that vary with ABI, such as /usr/lib/sparcv9 for ‘ABI=64’ as opposed to
/usr/lib for ‘ABI=32’. A package build can override ‘libdir’ and other standard variables as
necessary.

Note that gmp.h is a generated file, and will be architecture and ABI dependent. When attempt-
ing to install two ABIs simultaneously it will be important that an application compile gets the
correct gmp.h for its desired ABI. If compiler include paths don’t vary with ABI options then
it might be necessary to create a /usr/include/gmp.h which tests preprocessor symbols and
chooses the correct actual gmp.h.

2.4 Notes for Particular Systems

AIX 3 and 4
On systems ‘*-*-aix[34]*’ shared libraries are disabled by default, since some
versions of the native ar fail on the convenience libraries used. A shared build can
be attempted with

./configure --enable-shared --disable-static

Note that the ‘--disable-static’ is necessary because in a shared build libtool
makes libgmp.a a symlink to libgmp.so, apparently for the benefit of old versions
of ld which only recognise .a, but unfortunately this is done even if a fully functional
ld is available.

ARM On systems ‘arm*-*-*’, versions of GCC up to and including 2.95.3 have a bug in
unsigned division, giving wrong results for some operands. GMP ‘./configure’ will
demand GCC 2.95.4 or later.

Compaq C++
Compaq C++ on OSF 5.1 has two flavours of iostream, a standard one and an old
pre-standard one (see ‘man iostream_intro’). GMP can only use the standard one,
which unfortunately is not the default but must be selected by defining __USE_STD_

IOSTREAM. Configure with for instance

./configure --enable-cxx CPPFLAGS=-D__USE_STD_IOSTREAM

Floating Point Mode
On some systems, the hardware floating point has a control mode which can set
all operations to be done in a particular precision, for instance single, double or
extended on x86 systems (x87 floating point). The GMP functions involving a
double cannot be expected to operate to their full precision when the hardware is
in single precision mode. Of course this affects all code, including application code,
not just GMP.

FreeBSD 7.x, 8.x, 9.0, 9.1, 9.2
m4 in these releases of FreeBSD has an eval function which ignores its 2nd and 3rd
arguments, which makes it unsuitable for .asm file processing. ‘./configure’ will
detect the problem and either abort or choose another m4 in the PATH. The bug
is fixed in FreeBSD 9.3 and 10.0, so either upgrade or use GNU m4. Note that
the FreeBSD package system installs GNU m4 under the name ‘gm4’, which GMP
cannot guess.

FreeBSD 7.x, 8.x, 9.x
GMP releases starting with 6.0 do not support ‘ABI=32’ on FreeBSD/amd64 prior to
release 10.0 of the system. The cause is a broken limits.h, which GMP no longer
works around.

Chapter 2: Installing GMP 13

MS-DOS and MS Windows
On an MS-DOS system DJGPP can be used to build GMP, and on an MS Windows
system Cygwin, DJGPP and MINGW can be used. All three are excellent ports of
GCC and the various GNU tools.

https://www.cygwin.com/

http://www.delorie.com/djgpp/

http://www.mingw.org/

Microsoft also publishes an Interix “Services for Unix” which can be used to build
GMP on Windows (with a normal ‘./configure’), but it’s not free software.

MS Windows DLLs
On systems ‘*-*-cygwin*’, ‘*-*-mingw*’ and ‘*-*-pw32*’ by default GMP builds
only a static library, but a DLL can be built instead using

./configure --disable-static --enable-shared

Static and DLL libraries can’t both be built, since certain export directives in gmp.h

must be different.

A MINGW DLL build of GMP can be used with Microsoft C. Libtool doesn’t install
a .lib format import library, but it can be created with MS lib as follows, and
copied to the install directory. Similarly for libmp and libgmpxx.

cd .libs

lib /def:libgmp-3.dll.def /out:libgmp-3.lib

MINGW uses the C runtime library ‘msvcrt.dll’ for I/O, so applications wanting
to use the GMP I/O routines must be compiled with ‘cl /MD’ to do the same. If
one of the other C runtime library choices provided by MS C is desired then the
suggestion is to use the GMP string functions and confine I/O to the application.

Motorola 68k CPU Types
‘m68k’ is taken to mean 68000. ‘m68020’ or higher will give a performance boost on
applicable CPUs. ‘m68360’ can be used for CPU32 series chips. ‘m68302’ can be
used for “Dragonball” series chips, though this is merely a synonym for ‘m68000’.

NetBSD 5.x
m4 in these releases of NetBSD has an eval function which ignores its 2nd and 3rd
arguments, which makes it unsuitable for .asm file processing. ‘./configure’ will
detect the problem and either abort or choose another m4 in the PATH. The bug
is fixed in NetBSD 6, so either upgrade or use GNU m4. Note that the NetBSD
package system installs GNU m4 under the name ‘gm4’, which GMP cannot guess.

OpenBSD 2.6
m4 in this release of OpenBSD has a bug in eval that makes it unsuitable for .asm
file processing. ‘./configure’ will detect the problem and either abort or choose
another m4 in the PATH. The bug is fixed in OpenBSD 2.7, so either upgrade or use
GNU m4.

Power CPU Types
In GMP, CPU types ‘power*’ and ‘powerpc*’ will each use instructions not available
on the other, so it’s important to choose the right one for the CPU that will be used.
Currently GMP has no assembly code support for using just the common instruction
subset. To get executables that run on both, the current suggestion is to use the
generic C code (--disable-assembly), possibly with appropriate compiler options
(like ‘-mcpu=common’ for gcc). CPU ‘rs6000’ (which is not a CPU but a family of
workstations) is accepted by config.sub, but is currently equivalent to --disable-
assembly.

https://www.cygwin.com/
http://www.delorie.com/djgpp/
http://www.mingw.org/

14 GNU MP 6.2.1

Sparc CPU Types
‘sparcv8’ or ‘supersparc’ on relevant systems will give a significant performance
increase over the V7 code selected by plain ‘sparc’.

Sparc App Regs
The GMP assembly code for both 32-bit and 64-bit Sparc clobbers the “application
registers” g2, g3 and g4, the same way that the GCC default ‘-mapp-regs’ does
(see Section “SPARC Options” in Using the GNU Compiler Collection (GCC)).

This makes that code unsuitable for use with the special V9 ‘-mcmodel=embmedany’
(which uses g4 as a data segment pointer), and for applications wanting to use those
registers for special purposes. In these cases the only suggestion currently is to build
GMP with --disable-assembly to avoid the assembly code.

SunOS 4 /usr/bin/m4 lacks various features needed to process .asm files, and instead
‘./configure’ will automatically use /usr/5bin/m4, which we believe is always
available (if not then use GNU m4).

x86 CPU Types
‘i586’, ‘pentium’ or ‘pentiummmx’ code is good for its intended P5 Pentium chips,
but quite slow when run on Intel P6 class chips (PPro, P-II, P-III). ‘i386’ is a
better choice when making binaries that must run on both.

x86 MMX and SSE2 Code
If the CPU selected has MMX code but the assembler doesn’t support it, a warning
is given and non-MMX code is used instead. This will be an inferior build, since the
MMX code that’s present is there because it’s faster than the corresponding plain
integer code. The same applies to SSE2.

Old versions of ‘gas’ don’t support MMX instructions, in particular version 1.92.3
that comes with FreeBSD 2.2.8 or the more recent OpenBSD 3.1 doesn’t.

Solaris 2.6 and 2.7 as generate incorrect object code for register to register movq

instructions, and so can’t be used for MMX code. Install a recent gas if MMX code
is wanted on these systems.

2.5 Known Build Problems

You might find more up-to-date information at https://gmplib.org/.

Compiler link options
The version of libtool currently in use rather aggressively strips compiler options
when linking a shared library. This will hopefully be relaxed in the future, but for
now if this is a problem the suggestion is to create a little script to hide them, and
for instance configure with

./configure CC=gcc-with-my-options

DJGPP (‘*-*-msdosdjgpp*’)
The DJGPP port of bash 2.03 is unable to run the ‘configure’ script, it exits
silently, having died writing a preamble to config.log. Use bash 2.04 or higher.

‘make all’ was found to run out of memory during the final libgmp.la link on one
system tested, despite having 64Mb available. Running ‘make libgmp.la’ directly
helped, perhaps recursing into the various subdirectories uses up memory.

GNU binutils strip prior to 2.12
strip from GNU binutils 2.11 and earlier should not be used on the static libraries
libgmp.a and libmp.a since it will discard all but the last of multiple archive mem-
bers with the same name, like the three versions of init.o in libgmp.a. Binutils
2.12 or higher can be used successfully.

https://gmplib.org/

Chapter 2: Installing GMP 15

The shared libraries libgmp.so and libmp.so are not affected by this and any
version of strip can be used on them.

make syntax error
On certain versions of SCO OpenServer 5 and IRIX 6.5 the native make is unable to
handle the long dependencies list for libgmp.la. The symptom is a “syntax error”
on the following line of the top-level Makefile.

libgmp.la: $(libgmp_la_OBJECTS) $(libgmp_la_DEPENDENCIES)

Either use GNU Make, or as a workaround remove $(libgmp_la_DEPENDENCIES)

from that line (which will make the initial build work, but if any recompiling is done
libgmp.la might not be rebuilt).

MacOS X (‘*-*-darwin*’)
Libtool currently only knows how to create shared libraries on MacOS X using the
native cc (which is a modified GCC), not a plain GCC. A static-only build should
work though (‘--disable-shared’).

NeXT prior to 3.3
The system compiler on old versions of NeXT was a massacred and old GCC, even
if it called itself cc. This compiler cannot be used to build GMP, you need to get
a real GCC, and install that. (NeXT may have fixed this in release 3.3 of their
system.)

POWER and PowerPC
Bugs in GCC 2.7.2 (and 2.6.3) mean it can’t be used to compile GMP on POWER
or PowerPC. If you want to use GCC for these machines, get GCC 2.7.2.1 (or later).

Sequent Symmetry
Use the GNU assembler instead of the system assembler, since the latter has serious
bugs.

Solaris 2.6 The system sed prints an error “Output line too long” when libtool builds
libgmp.la. This doesn’t seem to cause any obvious ill effects, but GNU sed is
recommended, to avoid any doubt.

Sparc Solaris 2.7 with gcc 2.95.2 in ‘ABI=32’
A shared library build of GMP seems to fail in this combination, it builds but
then fails the tests, apparently due to some incorrect data relocations within gmp_

randinit_lc_2exp_size. The exact cause is unknown, ‘--disable-shared’ is rec-
ommended.

2.6 Performance optimization

For optimal performance, build GMP for the exact CPU type of the target computer, see
Section 2.1 [Build Options], page 3.

Unlike what is the case for most other programs, the compiler typically doesn’t matter much,
since GMP uses assembly language for the most critical operation.

In particular for long-running GMP applications, and applications demanding extremely large
numbers, building and running the tuneup program in the tune subdirectory, can be important.
For example,

cd tune

make tuneup

./tuneup

will generate better contents for the gmp-mparam.h parameter file.

16 GNU MP 6.2.1

To use the results, put the output in the file indicated in the ‘Parameters for ...’ header.
Then recompile from scratch.

The tuneup program takes one useful parameter, ‘-f NNN’, which instructs the program how long
to check FFT multiply parameters. If you’re going to use GMP for extremely large numbers,
you may want to run tuneup with a large NNN value.

17

3 GMP Basics

Using functions, macros, data types, etc. not documented in this manual is strongly discouraged.
If you do so your application is guaranteed to be incompatible with future versions of GMP.

3.1 Headers and Libraries

All declarations needed to use GMP are collected in the include file gmp.h. It is designed to
work with both C and C++ compilers.

#include <gmp.h>

Note however that prototypes for GMP functions with FILE * parameters are only provided if
<stdio.h> is included too.

#include <stdio.h>

#include <gmp.h>

Likewise <stdarg.h> is required for prototypes with va_list parameters, such as gmp_vprintf.
And <obstack.h> for prototypes with struct obstack parameters, such as gmp_obstack_

printf, when available.

All programs using GMP must link against the libgmp library. On a typical Unix-like system
this can be done with ‘-lgmp’, for example

gcc myprogram.c -lgmp

GMP C++ functions are in a separate libgmpxx library. This is built and installed if C++ support
has been enabled (see Section 2.1 [Build Options], page 3). For example,

g++ mycxxprog.cc -lgmpxx -lgmp

GMP is built using Libtool and an application can use that to link if desired, see GNU Libtool .

If GMP has been installed to a non-standard location then it may be necessary to use ‘-I’ and
‘-L’ compiler options to point to the right directories, and some sort of run-time path for a
shared library.

3.2 Nomenclature and Types

In this manual, integer usually means a multiple precision integer, as defined by the GMP
library. The C data type for such integers is mpz_t. Here are some examples of how to declare
such integers:

mpz_t sum;

struct foo { mpz_t x, y; };

mpz_t vec[20];

Rational number means a multiple precision fraction. The C data type for these fractions is
mpq_t. For example:

mpq_t quotient;

Floating point number or Float for short, is an arbitrary precision mantissa with a limited
precision exponent. The C data type for such objects is mpf_t. For example:

mpf_t fp;

18 GNU MP 6.2.1

The floating point functions accept and return exponents in the C type mp_exp_t. Currently
this is usually a long, but on some systems it’s an int for efficiency.

A limb means the part of a multi-precision number that fits in a single machine word. (We chose
this word because a limb of the human body is analogous to a digit, only larger, and containing
several digits.) Normally a limb is 32 or 64 bits. The C data type for a limb is mp_limb_t.

Counts of limbs of a multi-precision number represented in the C type mp_size_t. Currently
this is normally a long, but on some systems it’s an int for efficiency, and on some systems it
will be long long in the future.

Counts of bits of a multi-precision number are represented in the C type mp_bitcnt_t. Currently
this is always an unsigned long, but on some systems it will be an unsigned long long in the
future.

Random state means an algorithm selection and current state data. The C data type for such
objects is gmp_randstate_t. For example:

gmp_randstate_t rstate;

Also, in general mp_bitcnt_t is used for bit counts and ranges, and size_t is used for byte or
character counts.

3.3 Function Classes

There are six classes of functions in the GMP library:

1. Functions for signed integer arithmetic, with names beginning with mpz_. The associated
type is mpz_t. There are about 150 functions in this class. (see Chapter 5 [Integer Func-
tions], page 30)

2. Functions for rational number arithmetic, with names beginning with mpq_. The associated
type is mpq_t. There are about 35 functions in this class, but the integer functions can be
used for arithmetic on the numerator and denominator separately. (see Chapter 6 [Rational
Number Functions], page 47)

3. Functions for floating-point arithmetic, with names beginning with mpf_. The associated
type is mpf_t. There are about 70 functions is this class. (see Chapter 7 [Floating-point
Functions], page 52)

4. Fast low-level functions that operate on natural numbers. These are used by the functions
in the preceding groups, and you can also call them directly from very time-critical user
programs. These functions’ names begin with mpn_. The associated type is array of mp_
limb_t. There are about 60 (hard-to-use) functions in this class. (see Chapter 8 [Low-level
Functions], page 60)

5. Miscellaneous functions. Functions for setting up custom allocation and functions for gen-
erating random numbers. (see Chapter 13 [Custom Allocation], page 92, and see Chapter 9
[Random Number Functions], page 72)

3.4 Variable Conventions

GMP functions generally have output arguments before input arguments. This notation is by
analogy with the assignment operator.

GMP lets you use the same variable for both input and output in one call. For example, the
main function for integer multiplication, mpz_mul, can be used to square x and put the result
back in x with

mpz_mul (x, x, x);

Chapter 3: GMP Basics 19

Before you can assign to a GMP variable, you need to initialize it by calling one of the special
initialization functions. When you’re done with a variable, you need to clear it out, using one
of the functions for that purpose. Which function to use depends on the type of variable. See
the chapters on integer functions, rational number functions, and floating-point functions for
details.

A variable should only be initialized once, or at least cleared between each initialization. After
a variable has been initialized, it may be assigned to any number of times.

For efficiency reasons, avoid excessive initializing and clearing. In general, initialize near the
start of a function and clear near the end. For example,

void

foo (void)

{

mpz_t n;

int i;

mpz_init (n);

for (i = 1; i < 100; i++)

{

mpz_mul (n, ...);

mpz_fdiv_q (n, ...);

...

}

mpz_clear (n);

}

GMP types like mpz_t are implemented as one-element arrays of certain structures. Declaring
a variable creates an object with the fields GMP needs, but variables are normally manipulated
by using the pointer to the object. For both behavior and efficiency reasons, it is discouraged to
make copies of the GMP object itself (either directly or via aggregate objects containing such
GMP objects). If copies are done, all of them must be used read-only; using a copy as the
output of some function will invalidate all the other copies. Note that the actual fields in each
mpz_t etc are for internal use only and should not be accessed directly by code that expects to
be compatible with future GMP releases.

3.5 Parameter Conventions

When a GMP variable is used as a function parameter, it’s effectively a call-by-reference, meaning
that when the function stores a value there it will change the original in the caller. Parame-
ters which are input-only can be designated const to provoke a compiler error or warning on
attempting to modify them.

When a function is going to return a GMP result, it should designate a parameter that it sets,
like the library functions do. More than one value can be returned by having more than one
output parameter, again like the library functions. A return of an mpz_t etc doesn’t return the
object, only a pointer, and this is almost certainly not what’s wanted.

Here’s an example accepting an mpz_t parameter, doing a calculation, and storing the result to
the indicated parameter.

void

foo (mpz_t result, const mpz_t param, unsigned long n)

{

unsigned long i;

20 GNU MP 6.2.1

mpz_mul_ui (result, param, n);

for (i = 1; i < n; i++)

mpz_add_ui (result, result, i*7);

}

int

main (void)

{

mpz_t r, n;

mpz_init (r);

mpz_init_set_str (n, "123456", 0);

foo (r, n, 20L);

gmp_printf ("%Zd\n", r);

return 0;

}

Our function foo works even if its caller passes the same variable for param and result, just like
the library functions. But sometimes it’s tricky to make that work, and an application might
not want to bother supporting that sort of thing.

Since GMP types are implemented as one-element arrays, using a GMP variable as a parameter
passes a pointer to the object. Hence the call-by-reference.

3.6 Memory Management

The GMP types like mpz_t are small, containing only a couple of sizes, and pointers to allocated
data. Once a variable is initialized, GMP takes care of all space allocation. Additional space is
allocated whenever a variable doesn’t have enough.

mpz_t and mpq_t variables never reduce their allocated space. Normally this is the best policy,
since it avoids frequent reallocation. Applications that need to return memory to the heap at
some particular point can use mpz_realloc2, or clear variables no longer needed.

mpf_t variables, in the current implementation, use a fixed amount of space, determined by the
chosen precision and allocated at initialization, so their size doesn’t change.

All memory is allocated using malloc and friends by default, but this can be changed, see
Chapter 13 [Custom Allocation], page 92. Temporary memory on the stack is also used (via
alloca), but this can be changed at build-time if desired, see Section 2.1 [Build Options], page 3.

3.7 Reentrancy

GMP is reentrant and thread-safe, with some exceptions:

• If configured with --enable-alloca=malloc-notreentrant (or with --enable-

alloca=notreentrant when alloca is not available), then naturally GMP is not
reentrant.

• mpf_set_default_prec and mpf_init use a global variable for the selected precision. mpf_
init2 can be used instead, and in the C++ interface an explicit precision to the mpf_class
constructor.

• mpz_random and the other old random number functions use a global random state and are
hence not reentrant. The newer random number functions that accept a gmp_randstate_t

parameter can be used instead.

• gmp_randinit (obsolete) returns an error indication through a global variable, which is not

Chapter 3: GMP Basics 21

thread safe. Applications are advised to use gmp_randinit_default or gmp_randinit_lc_
2exp instead.

• mp_set_memory_functions uses global variables to store the selected memory allocation
functions.

• If the memory allocation functions set by a call to mp_set_memory_functions (or malloc
and friends by default) are not reentrant, then GMP will not be reentrant either.

• If the standard I/O functions such as fwrite are not reentrant then the GMP I/O functions
using them will not be reentrant either.

• It’s safe for two threads to read from the same GMP variable simultaneously, but it’s not safe
for one to read while another might be writing, nor for two threads to write simultaneously.
It’s not safe for two threads to generate a random number from the same gmp_randstate_t
simultaneously, since this involves an update of that variable.

3.8 Useful Macros and Constants

[Global Constant]const int mp_bits_per_limb
The number of bits per limb.

[Macro]__GNU_MP_VERSION
[Macro]__GNU_MP_VERSION_MINOR
[Macro]__GNU_MP_VERSION_PATCHLEVEL

The major and minor GMP version, and patch level, respectively, as integers. For GMP i.j,
these numbers will be i, j, and 0, respectively. For GMP i.j.k, these numbers will be i, j, and
k, respectively.

[Global Constant]const char * const gmp_version
The GMP version number, as a null-terminated string, in the form “i.j.k”. This release is
"6.2.1". Note that the format “i.j” was used, before version 4.3.0, when k was zero.

[Macro]__GMP_CC
[Macro]__GMP_CFLAGS

The compiler and compiler flags, respectively, used when compiling GMP, as strings.

3.9 Compatibility with older versions

This version of GMP is upwardly binary compatible with all 5.x, 4.x, and 3.x versions, and
upwardly compatible at the source level with all 2.x versions, with the following exceptions.

• mpn_gcd had its source arguments swapped as of GMP 3.0, for consistency with other mpn
functions.

• mpf_get_prec counted precision slightly differently in GMP 3.0 and 3.0.1, but in 3.1 re-
verted to the 2.x style.

• mpn_bdivmod, documented as preliminary in GMP 4, has been removed.

There are a number of compatibility issues between GMP 1 and GMP 2 that of course also
apply when porting applications from GMP 1 to GMP 5. Please see the GMP 2 manual for
details.

3.10 Demonstration programs

The demos subdirectory has some sample programs using GMP. These aren’t built or installed,
but there’s a Makefile with rules for them. For instance,

make pexpr

22 GNU MP 6.2.1

./pexpr 68^975+10

The following programs are provided

• ‘pexpr’ is an expression evaluator, the program used on the GMP web page.

• The ‘calc’ subdirectory has a similar but simpler evaluator using lex and yacc.

• The ‘expr’ subdirectory is yet another expression evaluator, a library designed for ease of
use within a C program. See demos/expr/README for more information.

• ‘factorize’ is a Pollard-Rho factorization program.

• ‘isprime’ is a command-line interface to the mpz_probab_prime_p function.

• ‘primes’ counts or lists primes in an interval, using a sieve.

• ‘qcn’ is an example use of mpz_kronecker_ui to estimate quadratic class numbers.

• The ‘perl’ subdirectory is a comprehensive perl interface to GMP. See
demos/perl/INSTALL for more information. Documentation is in POD format in
demos/perl/GMP.pm.

As an aside, consideration has been given at various times to some sort of expression evaluation
within the main GMP library. Going beyond something minimal quickly leads to matters like
user-defined functions, looping, fixnums for control variables, etc, which are considered outside
the scope of GMP (much closer to language interpreters or compilers, See Chapter 14 [Language
Bindings], page 94.) Something simple for program input convenience may yet be a possibility,
a combination of the expr demo and the pexpr tree back-end perhaps. But for now the above
evaluators are offered as illustrations.

3.11 Efficiency

Small Operands
On small operands, the time for function call overheads and memory allocation can
be significant in comparison to actual calculation. This is unavoidable in a general
purpose variable precision library, although GMP attempts to be as efficient as it
can on both large and small operands.

Static Linking
On some CPUs, in particular the x86s, the static libgmp.a should be used for
maximum speed, since the PIC code in the shared libgmp.so will have a small
overhead on each function call and global data address. For many programs this
will be insignificant, but for long calculations there’s a gain to be had.

Initializing and Clearing
Avoid excessive initializing and clearing of variables, since this can be quite time
consuming, especially in comparison to otherwise fast operations like addition.

A language interpreter might want to keep a free list or stack of initialized variables
ready for use. It should be possible to integrate something like that with a garbage
collector too.

Reallocations
An mpz_t or mpq_t variable used to hold successively increasing values will have
its memory repeatedly realloced, which could be quite slow or could fragment
memory, depending on the C library. If an application can estimate the final size
then mpz_init2 or mpz_realloc2 can be called to allocate the necessary space from
the beginning (see Section 5.1 [Initializing Integers], page 30).

It doesn’t matter if a size set with mpz_init2 or mpz_realloc2 is too small, since all
functions will do a further reallocation if necessary. Badly overestimating memory
required will waste space though.

Chapter 3: GMP Basics 23

2exp Functions
It’s up to an application to call functions like mpz_mul_2exp when appropriate.
General purpose functions like mpz_mul make no attempt to identify powers of two
or other special forms, because such inputs will usually be very rare and testing
every time would be wasteful.

ui and si Functions
The ui functions and the small number of si functions exist for convenience and
should be used where applicable. But if for example an mpz_t contains a value that
fits in an unsigned long there’s no need extract it and call a ui function, just use
the regular mpz function.

In-Place Operations
mpz_abs, mpq_abs, mpf_abs, mpz_neg, mpq_neg and mpf_neg are fast when used for
in-place operations like mpz_abs(x,x), since in the current implementation only a
single field of x needs changing. On suitable compilers (GCC for instance) this is
inlined too.

mpz_add_ui, mpz_sub_ui, mpf_add_ui and mpf_sub_ui benefit from an in-place
operation like mpz_add_ui(x,x,y), since usually only one or two limbs of x will
need to be changed. The same applies to the full precision mpz_add etc if y is small.
If y is big then cache locality may be helped, but that’s all.

mpz_mul is currently the opposite, a separate destination is slightly better. A call
like mpz_mul(x,x,y) will, unless y is only one limb, make a temporary copy of x
before forming the result. Normally that copying will only be a tiny fraction of the
time for the multiply, so this is not a particularly important consideration.

mpz_set, mpq_set, mpq_set_num, mpf_set, etc, make no attempt to recognise a
copy of something to itself, so a call like mpz_set(x,x) will be wasteful. Naturally
that would never be written deliberately, but if it might arise from two pointers to
the same object then a test to avoid it might be desirable.

if (x != y)

mpz_set (x, y);

Note that it’s never worth introducing extra mpz_set calls just to get in-place op-
erations. If a result should go to a particular variable then just direct it there and
let GMP take care of data movement.

Divisibility Testing (Small Integers)
mpz_divisible_ui_p and mpz_congruent_ui_p are the best functions for testing
whether an mpz_t is divisible by an individual small integer. They use an algorithm
which is faster than mpz_tdiv_ui, but which gives no useful information about the
actual remainder, only whether it’s zero (or a particular value).

However when testing divisibility by several small integers, it’s best to take a re-
mainder modulo their product, to save multi-precision operations. For instance to
test whether a number is divisible by any of 23, 29 or 31 take a remainder modulo
23× 29× 31 = 20677 and then test that.

The division functions like mpz_tdiv_q_ui which give a quotient as well as a re-
mainder are generally a little slower than the remainder-only functions like mpz_

tdiv_ui. If the quotient is only rarely wanted then it’s probably best to just take
a remainder and then go back and calculate the quotient if and when it’s wanted
(mpz_divexact_ui can be used if the remainder is zero).

Rational Arithmetic
The mpq functions operate on mpq_t values with no common factors in the numerator
and denominator. Common factors are checked-for and cast out as necessary. In

24 GNU MP 6.2.1

general, cancelling factors every time is the best approach since it minimizes the
sizes for subsequent operations.

However, applications that know something about the factorization of the values
they’re working with might be able to avoid some of the GCDs used for canonical-
ization, or swap them for divisions. For example when multiplying by a prime it’s
enough to check for factors of it in the denominator instead of doing a full GCD.
Or when forming a big product it might be known that very little cancellation will
be possible, and so canonicalization can be left to the end.

The mpq_numref and mpq_denref macros give access to the numerator and denom-
inator to do things outside the scope of the supplied mpq functions. See Section 6.5
[Applying Integer Functions], page 50.

The canonical form for rationals allows mixed-type mpq_t and integer additions or
subtractions to be done directly with multiples of the denominator. This will be
somewhat faster than mpq_add. For example,

/* mpq increment */

mpz_add (mpq_numref(q), mpq_numref(q), mpq_denref(q));

/* mpq += unsigned long */

mpz_addmul_ui (mpq_numref(q), mpq_denref(q), 123UL);

/* mpq -= mpz */

mpz_submul (mpq_numref(q), mpq_denref(q), z);

Number Sequences
Functions like mpz_fac_ui, mpz_fib_ui and mpz_bin_uiui are designed for calcu-
lating isolated values. If a range of values is wanted it’s probably best to get a
starting point and iterate from there.

Text Input/Output
Hexadecimal or octal are suggested for input or output in text form. Power-of-
2 bases like these can be converted much more efficiently than other bases, like
decimal. For big numbers there’s usually nothing of particular interest to be seen
in the digits, so the base doesn’t matter much.

Maybe we can hope octal will one day become the normal base for everyday use, as
proposed by King Charles XII of Sweden and later reformers.

3.12 Debugging

Stack Overflow
Depending on the system, a segmentation violation or bus error might be the only
indication of stack overflow. See ‘--enable-alloca’ choices in Section 2.1 [Build
Options], page 3, for how to address this.

In new enough versions of GCC, ‘-fstack-check’ may be able to ensure
an overflow is recognised by the system before too much damage is done, or
‘-fstack-limit-symbol’ or ‘-fstack-limit-register’ may be able to add
checking if the system itself doesn’t do any (see Section “Options for Code
Generation” in Using the GNU Compiler Collection (GCC)). These options must
be added to the ‘CFLAGS’ used in the GMP build (see Section 2.1 [Build Options],
page 3), adding them just to an application will have no effect. Note also they’re a
slowdown, adding overhead to each function call and each stack allocation.

Heap Problems
The most likely cause of application problems with GMP is heap corruption. Fail-
ing to init GMP variables will have unpredictable effects, and corruption arising

Chapter 3: GMP Basics 25

elsewhere in a program may well affect GMP. Initializing GMP variables more than
once or failing to clear them will cause memory leaks.

In all such cases a malloc debugger is recommended. On a GNU or BSD system
the standard C library malloc has some diagnostic facilities, see Section “Allocation
Debugging” in The GNU C Library Reference Manual, or ‘man 3 malloc’. Other
possibilities, in no particular order, include

http://cs.ecs.baylor.edu/~donahoo/tools/ccmalloc/

http://dmalloc.com/

https://wiki.gnome.org/Apps/MemProf

The GMP default allocation routines in memory.c also have a simple sentinel scheme
which can be enabled with #define DEBUG in that file. This is mainly designed for
detecting buffer overruns during GMP development, but might find other uses.

Stack Backtraces
On some systems the compiler options GMP uses by default can interfere with
debugging. In particular on x86 and 68k systems ‘-fomit-frame-pointer’ is used
and this generally inhibits stack backtracing. Recompiling without such options
may help while debugging, though the usual caveats about it potentially moving a
memory problem or hiding a compiler bug will apply.

GDB, the GNU Debugger
A sample .gdbinit is included in the distribution, showing how to call some undocu-
mented dump functions to print GMP variables from within GDB. Note that these
functions shouldn’t be used in final application code since they’re undocumented
and may be subject to incompatible changes in future versions of GMP.

Source File Paths
GMP has multiple source files with the same name, in different directories. For
example mpz, mpq and mpf each have an init.c. If the debugger can’t already
determine the right one it may help to build with absolute paths on each C file.
One way to do that is to use a separate object directory with an absolute path to
the source directory.

cd /my/build/dir

/my/source/dir/gmp-6.2.1/configure

This works via VPATH, and might require GNU make. Alternately it might be possible
to change the .c.lo rules appropriately.

Assertion Checking
The build option --enable-assert is available to add some consistency checks to
the library (see Section 2.1 [Build Options], page 3). These are likely to be of limited
value to most applications. Assertion failures are just as likely to indicate memory
corruption as a library or compiler bug.

Applications using the low-level mpn functions, however, will benefit from --enable-

assert since it adds checks on the parameters of most such functions, many of which
have subtle restrictions on their usage. Note however that only the generic C code
has checks, not the assembly code, so --disable-assembly should be used for
maximum checking.

Temporary Memory Checking
The build option --enable-alloca=debug arranges that each block of temporary
memory in GMP is allocated with a separate call to malloc (or the allocation
function set with mp_set_memory_functions).

This can help a malloc debugger detect accesses outside the intended bounds, or
detect memory not released. In a normal build, on the other hand, temporary

http://cs.ecs.baylor.edu/~donahoo/tools/ccmalloc/
http://dmalloc.com/
https://wiki.gnome.org/Apps/MemProf

26 GNU MP 6.2.1

memory is allocated in blocks which GMP divides up for its own use, or may be
allocated with a compiler builtin alloca which will go nowhere near any malloc
debugger hooks.

Maximum Debuggability
To summarize the above, a GMP build for maximum debuggability would be

./configure --disable-shared --enable-assert \

--enable-alloca=debug --disable-assembly CFLAGS=-g

For C++, add ‘--enable-cxx CXXFLAGS=-g’.

Checker The GCC checker (https://savannah.nongnu.org/projects/checker/) can be
used with GMP. It contains a stub library which means GMP applications compiled
with checker can use a normal GMP build.

A build of GMP with checking within GMP itself can be made. This will run very
very slowly. On GNU/Linux for example,

./configure --disable-assembly CC=checkergcc

--disable-assembly must be used, since the GMP assembly code doesn’t support
the checking scheme. The GMP C++ features cannot be used, since current versions
of checker (0.9.9.1) don’t yet support the standard C++ library.

Valgrind Valgrind (http://valgrind.org/) is a memory checker for x86, ARM, MIPS,
PowerPC, and S/390. It translates and emulates machine instructions to do strong
checks for uninitialized data (at the level of individual bits), memory accesses
through bad pointers, and memory leaks.

Valgrind does not always support every possible instruction, in particular ones re-
cently added to an ISA. Valgrind might therefore be incompatible with a recent
GMP or even a less recent GMP which is compiled using a recent GCC.

GMP’s assembly code sometimes promotes a read of the limbs to some larger size,
for efficiency. GMP will do this even at the start and end of a multilimb operand,
using naturally aligned operations on the larger type. This may lead to benign reads
outside of allocated areas, triggering complaints from Valgrind. Valgrind’s option
‘--partial-loads-ok=yes’ should help.

Other Problems
Any suspected bug in GMP itself should be isolated to make sure it’s not an appli-
cation problem, see Chapter 4 [Reporting Bugs], page 29.

3.13 Profiling

Running a program under a profiler is a good way to find where it’s spending most time and
where improvements can be best sought. The profiling choices for a GMP build are as follows.

‘--disable-profiling’
The default is to add nothing special for profiling.

It should be possible to just compile the mainline of a program with -p and use prof
to get a profile consisting of timer-based sampling of the program counter. Most of
the GMP assembly code has the necessary symbol information.

This approach has the advantage of minimizing interference with normal program
operation, but on most systems the resolution of the sampling is quite low (10
milliseconds for instance), requiring long runs to get accurate information.

‘--enable-profiling=prof’
Build with support for the system prof, which means ‘-p’ added to the ‘CFLAGS’.

https://savannah.nongnu.org/projects/checker/
http://valgrind.org/

Chapter 3: GMP Basics 27

This provides call counting in addition to program counter sampling, which allows
the most frequently called routines to be identified, and an average time spent in
each routine to be determined.

The x86 assembly code has support for this option, but on other processors the
assembly routines will be as if compiled without ‘-p’ and therefore won’t appear in
the call counts.

On some systems, such as GNU/Linux, ‘-p’ in fact means ‘-pg’ and in this case
‘--enable-profiling=gprof’ described below should be used instead.

‘--enable-profiling=gprof’
Build with support for gprof, which means ‘-pg’ added to the ‘CFLAGS’.

This provides call graph construction in addition to call counting and program
counter sampling, which makes it possible to count calls coming from different loca-
tions. For example the number of calls to mpn_mul from mpz_mul versus the number
from mpf_mul. The program counter sampling is still flat though, so only a total
time in mpn_mul would be accumulated, not a separate amount for each call site.

The x86 assembly code has support for this option, but on other processors the
assembly routines will be as if compiled without ‘-pg’ and therefore not be included
in the call counts.

On x86 and m68k systems ‘-pg’ and ‘-fomit-frame-pointer’ are incompatible, so
the latter is omitted from the default flags in that case, which might result in poorer
code generation.

Incidentally, it should be possible to use the gprof program with a plain
‘--enable-profiling=prof’ build. But in that case only the ‘gprof -p’ flat profile
and call counts can be expected to be valid, not the ‘gprof -q’ call graph.

‘--enable-profiling=instrument’
Build with the GCC option ‘-finstrument-functions’ added to the ‘CFLAGS’ (see
Section “Options for Code Generation” in Using the GNU Compiler Collection
(GCC)).

This inserts special instrumenting calls at the start and end of each function, allowing
exact timing and full call graph construction.

This instrumenting is not normally a standard system feature and will require sup-
port from an external library, such as

https://sourceforge.net/projects/fnccheck/

This should be included in ‘LIBS’ during the GMP configure so that test programs
will link. For example,

./configure --enable-profiling=instrument LIBS=-lfc

On a GNU system the C library provides dummy instrumenting functions, so pro-
grams compiled with this option will link. In this case it’s only necessary to ensure
the correct library is added when linking an application.

The x86 assembly code supports this option, but on other processors the assembly
routines will be as if compiled without ‘-finstrument-functions’ meaning time
spent in them will effectively be attributed to their caller.

3.14 Autoconf

Autoconf based applications can easily check whether GMP is installed. The only thing to be
noted is that GMP library symbols from version 3 onwards have prefixes like __gmpz. The
following therefore would be a simple test,

AC_CHECK_LIB(gmp, __gmpz_init)

https://sourceforge.net/projects/fnccheck/

28 GNU MP 6.2.1

This just uses the default AC_CHECK_LIB actions for found or not found, but an application that
must have GMP would want to generate an error if not found. For example,

AC_CHECK_LIB(gmp, __gmpz_init, ,

[AC_MSG_ERROR([GNU MP not found, see https://gmplib.org/])])

If functions added in some particular version of GMP are required, then one of those can be
used when checking. For example mpz_mul_si was added in GMP 3.1,

AC_CHECK_LIB(gmp, __gmpz_mul_si, ,

[AC_MSG_ERROR(

[GNU MP not found, or not 3.1 or up, see https://gmplib.org/])])

An alternative would be to test the version number in gmp.h using say AC_EGREP_CPP. That
would make it possible to test the exact version, if some particular sub-minor release is known
to be necessary.

In general it’s recommended that applications should simply demand a new enough GMP rather
than trying to provide supplements for features not available in past versions.

Occasionally an application will need or want to know the size of a type at configuration or
preprocessing time, not just with sizeof in the code. This can be done in the normal way
with mp_limb_t etc, but GMP 4.0 or up is best for this, since prior versions needed certain ‘-D’
defines on systems using a long long limb. The following would suit Autoconf 2.50 or up,

AC_CHECK_SIZEOF(mp_limb_t, , [#include <gmp.h>])

3.15 Emacs

C-h C-i (info-lookup-symbol) is a good way to find documentation on C functions while
editing (see Section “Info Documentation Lookup” in The Emacs Editor).

The GMP manual can be included in such lookups by putting the following in your .emacs,

(eval-after-load "info-look"

’(let ((mode-value (assoc ’c-mode (assoc ’symbol info-lookup-alist))))

(setcar (nthcdr 3 mode-value)

(cons ’("(gmp)Function Index" nil "^ -.* " "\\>")

(nth 3 mode-value)))))

29

4 Reporting Bugs

If you think you have found a bug in the GMP library, please investigate it and report it. We
have made this library available to you, and it is not too much to ask you to report the bugs
you find.

Before you report a bug, check it’s not already addressed in Section 2.5 [Known Build Problems],
page 14, or perhaps Section 2.4 [Notes for Particular Systems], page 12. You may also want to
check https://gmplib.org/ for patches for this release.

Please include the following in any report,

• The GMP version number, and if pre-packaged or patched then say so.

• A test program that makes it possible for us to reproduce the bug. Include instructions on
how to run the program.

• A description of what is wrong. If the results are incorrect, in what way. If you get a crash,
say so.

• If you get a crash, include a stack backtrace from the debugger if it’s informative (‘where’
in gdb, or ‘$C’ in adb).

• Please do not send core dumps, executables or straces.

• The ‘configure’ options you used when building GMP, if any.

• The output from ‘configure’, as printed to stdout, with any options used.

• The name of the compiler and its version. For gcc, get the version with ‘gcc -v’, otherwise
perhaps ‘what ‘which cc‘’, or similar.

• The output from running ‘uname -a’.

• The output from running ‘./config.guess’, and from running ‘./configfsf.guess’
(might be the same).

• If the bug is related to ‘configure’, then the compressed contents of config.log.

• If the bug is related to an asm file not assembling, then the contents of config.m4 and the
offending line or lines from the temporary mpn/tmp-<file>.s.

Please make an effort to produce a self-contained report, with something definite that can be
tested or debugged. Vague queries or piecemeal messages are difficult to act on and don’t help
the development effort.

It is not uncommon that an observed problem is actually due to a bug in the compiler; the GMP
code tends to explore interesting corners in compilers.

If your bug report is good, we will do our best to help you get a corrected version of the library;
if the bug report is poor, we won’t do anything about it (except maybe ask you to send a better
report).

Send your report to: gmp-bugs@gmplib.org.

If you think something in this manual is unclear, or downright incorrect, or if the language needs
to be improved, please send a note to the same address.

https://gmplib.org/
mailto:gmp-bugs@gmplib.org

30 GNU MP 6.2.1

5 Integer Functions

This chapter describes the GMP functions for performing integer arithmetic. These functions
start with the prefix mpz_.

GMP integers are stored in objects of type mpz_t.

5.1 Initialization Functions

The functions for integer arithmetic assume that all integer objects are initialized. You do that
by calling the function mpz_init. For example,

{

mpz_t integ;

mpz_init (integ);

...

mpz_add (integ, ...);

...

mpz_sub (integ, ...);

/* Unless the program is about to exit, do ... */

mpz_clear (integ);

}

As you can see, you can store new values any number of times, once an object is initialized.

[Function]void mpz_init (mpz t x)
Initialize x, and set its value to 0.

[Function]void mpz_inits (mpz t x, ...)
Initialize a NULL-terminated list of mpz_t variables, and set their values to 0.

[Function]void mpz_init2 (mpz t x, mp bitcnt t n)
Initialize x, with space for n-bit numbers, and set its value to 0. Calling this function instead
of mpz_init or mpz_inits is never necessary; reallocation is handled automatically by GMP
when needed.

While n defines the initial space, x will grow automatically in the normal way, if necessary,
for subsequent values stored. mpz_init2 makes it possible to avoid such reallocations if a
maximum size is known in advance.

In preparation for an operation, GMP often allocates one limb more than ultimately needed.
To make sure GMP will not perform reallocation for x, you need to add the number of bits
in mp_limb_t to n.

[Function]void mpz_clear (mpz t x)
Free the space occupied by x. Call this function for all mpz_t variables when you are done
with them.

[Function]void mpz_clears (mpz t x, ...)
Free the space occupied by a NULL-terminated list of mpz_t variables.

[Function]void mpz_realloc2 (mpz t x, mp bitcnt t n)
Change the space allocated for x to n bits. The value in x is preserved if it fits, or is set to
0 if not.

Chapter 5: Integer Functions 31

Calling this function is never necessary; reallocation is handled automatically by GMP when
needed. But this function can be used to increase the space for a variable in order to avoid
repeated automatic reallocations, or to decrease it to give memory back to the heap.

5.2 Assignment Functions

These functions assign new values to already initialized integers (see Section 5.1 [Initializing
Integers], page 30).

[Function]void mpz_set (mpz t rop, const mpz t op)
[Function]void mpz_set_ui (mpz t rop, unsigned long int op)
[Function]void mpz_set_si (mpz t rop, signed long int op)
[Function]void mpz_set_d (mpz t rop, double op)
[Function]void mpz_set_q (mpz t rop, const mpq t op)
[Function]void mpz_set_f (mpz t rop, const mpf t op)

Set the value of rop from op.

mpz_set_d, mpz_set_q and mpz_set_f truncate op to make it an integer.

[Function]int mpz_set_str (mpz t rop, const char *str, int base)
Set the value of rop from str, a null-terminated C string in base base. White space is allowed
in the string, and is simply ignored.

The base may vary from 2 to 62, or if base is 0, then the leading characters are used: 0x and
0X for hexadecimal, 0b and 0B for binary, 0 for octal, or decimal otherwise.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value. For
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

This function returns 0 if the entire string is a valid number in base base. Otherwise it returns
−1.

[Function]void mpz_swap (mpz t rop1, mpz t rop2)
Swap the values rop1 and rop2 efficiently.

5.3 Combined Initialization and Assignment Functions

For convenience, GMP provides a parallel series of initialize-and-set functions which initialize the
output and then store the value there. These functions’ names have the form mpz_init_set...

Here is an example of using one:

{

mpz_t pie;

mpz_init_set_str (pie, "3141592653589793238462643383279502884", 10);

...

mpz_sub (pie, ...);

...

mpz_clear (pie);

}

Once the integer has been initialized by any of the mpz_init_set... functions, it can be used
as the source or destination operand for the ordinary integer functions. Don’t use an initialize-
and-set function on a variable already initialized!

32 GNU MP 6.2.1

[Function]void mpz_init_set (mpz t rop, const mpz t op)
[Function]void mpz_init_set_ui (mpz t rop, unsigned long int op)
[Function]void mpz_init_set_si (mpz t rop, signed long int op)
[Function]void mpz_init_set_d (mpz t rop, double op)

Initialize rop with limb space and set the initial numeric value from op.

[Function]int mpz_init_set_str (mpz t rop, const char *str, int base)
Initialize rop and set its value like mpz_set_str (see its documentation above for details).

If the string is a correct base base number, the function returns 0; if an error occurs it returns
−1. rop is initialized even if an error occurs. (I.e., you have to call mpz_clear for it.)

5.4 Conversion Functions

This section describes functions for converting GMP integers to standard C types. Functions
for converting to GMP integers are described in Section 5.2 [Assigning Integers], page 31, and
Section 5.12 [I/O of Integers], page 41.

[Function]unsigned long int mpz_get_ui (const mpz t op)
Return the value of op as an unsigned long.

If op is too big to fit an unsigned long then just the least significant bits that do fit are
returned. The sign of op is ignored, only the absolute value is used.

[Function]signed long int mpz_get_si (const mpz t op)
If op fits into a signed long int return the value of op. Otherwise return the least significant
part of op, with the same sign as op.

If op is too big to fit in a signed long int, the returned result is probably not very useful.
To find out if the value will fit, use the function mpz_fits_slong_p.

[Function]double mpz_get_d (const mpz t op)
Convert op to a double, truncating if necessary (i.e. rounding towards zero).

If the exponent from the conversion is too big, the result is system dependent. An infinity is
returned where available. A hardware overflow trap may or may not occur.

[Function]double mpz_get_d_2exp (signed long int *exp, const mpz t op)
Convert op to a double, truncating if necessary (i.e. rounding towards zero), and returning
the exponent separately.

The return value is in the range 0.5 ≤ |d| < 1 and the exponent is stored to *exp. d ∗ 2exp is
the (truncated) op value. If op is zero, the return is 0.0 and 0 is stored to *exp.

This is similar to the standard C frexp function (see Section “Normalization Functions” in
The GNU C Library Reference Manual).

[Function]char * mpz_get_str (char *str, int base, const mpz t op)
Convert op to a string of digits in base base. The base argument may vary from 2 to 62 or
from −2 to −36.

For base in the range 2..36, digits and lower-case letters are used; for −2..−36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

Chapter 5: Integer Functions 33

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 13 [Custom Allocation], page 92). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of storage large enough for the result, that being
mpz_sizeinbase (op, base) + 2. The two extra bytes are for a possible minus sign, and the
null-terminator.

A pointer to the result string is returned, being either the allocated block, or the given str.

5.5 Arithmetic Functions

[Function]void mpz_add (mpz t rop, const mpz t op1, const mpz t op2)
[Function]void mpz_add_ui (mpz t rop, const mpz t op1, unsigned long int op2)

Set rop to op1 + op2.

[Function]void mpz_sub (mpz t rop, const mpz t op1, const mpz t op2)
[Function]void mpz_sub_ui (mpz t rop, const mpz t op1, unsigned long int op2)
[Function]void mpz_ui_sub (mpz t rop, unsigned long int op1, const mpz t op2)

Set rop to op1 − op2.

[Function]void mpz_mul (mpz t rop, const mpz t op1, const mpz t op2)
[Function]void mpz_mul_si (mpz t rop, const mpz t op1, long int op2)
[Function]void mpz_mul_ui (mpz t rop, const mpz t op1, unsigned long int op2)

Set rop to op1 × op2.

[Function]void mpz_addmul (mpz t rop, const mpz t op1, const mpz t op2)
[Function]void mpz_addmul_ui (mpz t rop, const mpz t op1, unsigned long int

op2)
Set rop to rop + op1 × op2.

[Function]void mpz_submul (mpz t rop, const mpz t op1, const mpz t op2)
[Function]void mpz_submul_ui (mpz t rop, const mpz t op1, unsigned long int

op2)
Set rop to rop − op1 × op2.

[Function]void mpz_mul_2exp (mpz t rop, const mpz t op1, mp bitcnt t op2)
Set rop to op1 × 2op2. This operation can also be defined as a left shift by op2 bits.

[Function]void mpz_neg (mpz t rop, const mpz t op)
Set rop to −op.

[Function]void mpz_abs (mpz t rop, const mpz t op)
Set rop to the absolute value of op.

34 GNU MP 6.2.1

5.6 Division Functions

Division is undefined if the divisor is zero. Passing a zero divisor to the division or modulo
functions (including the modular powering functions mpz_powm and mpz_powm_ui), will cause an
intentional division by zero. This lets a program handle arithmetic exceptions in these functions
the same way as for normal C int arithmetic.

[Function]void mpz_cdiv_q (mpz t q, const mpz t n, const mpz t d)
[Function]void mpz_cdiv_r (mpz t r, const mpz t n, const mpz t d)
[Function]void mpz_cdiv_qr (mpz t q, mpz t r, const mpz t n, const mpz t d)
[Function]unsigned long int mpz_cdiv_q_ui (mpz t q, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_cdiv_r_ui (mpz t r, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_cdiv_qr_ui (mpz t q, mpz t r, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_cdiv_ui (const mpz t n, unsigned long int d)
[Function]void mpz_cdiv_q_2exp (mpz t q, const mpz t n, mp bitcnt t b)
[Function]void mpz_cdiv_r_2exp (mpz t r, const mpz t n, mp bitcnt t b)

[Function]void mpz_fdiv_q (mpz t q, const mpz t n, const mpz t d)
[Function]void mpz_fdiv_r (mpz t r, const mpz t n, const mpz t d)
[Function]void mpz_fdiv_qr (mpz t q, mpz t r, const mpz t n, const mpz t d)
[Function]unsigned long int mpz_fdiv_q_ui (mpz t q, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_fdiv_r_ui (mpz t r, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_fdiv_qr_ui (mpz t q, mpz t r, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_fdiv_ui (const mpz t n, unsigned long int d)
[Function]void mpz_fdiv_q_2exp (mpz t q, const mpz t n, mp bitcnt t b)
[Function]void mpz_fdiv_r_2exp (mpz t r, const mpz t n, mp bitcnt t b)

[Function]void mpz_tdiv_q (mpz t q, const mpz t n, const mpz t d)
[Function]void mpz_tdiv_r (mpz t r, const mpz t n, const mpz t d)
[Function]void mpz_tdiv_qr (mpz t q, mpz t r, const mpz t n, const mpz t d)
[Function]unsigned long int mpz_tdiv_q_ui (mpz t q, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_tdiv_r_ui (mpz t r, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_tdiv_qr_ui (mpz t q, mpz t r, const mpz t n,

unsigned long int d)
[Function]unsigned long int mpz_tdiv_ui (const mpz t n, unsigned long int d)
[Function]void mpz_tdiv_q_2exp (mpz t q, const mpz t n, mp bitcnt t b)
[Function]void mpz_tdiv_r_2exp (mpz t r, const mpz t n, mp bitcnt t b)

Divide n by d, forming a quotient q and/or remainder r. For the 2exp functions, d = 2b. The
rounding is in three styles, each suiting different applications.

• cdiv rounds q up towards +∞, and r will have the opposite sign to d. The c stands for
“ceil”.

• fdiv rounds q down towards −∞, and r will have the same sign as d. The f stands for
“floor”.

Chapter 5: Integer Functions 35

• tdiv rounds q towards zero, and r will have the same sign as n. The t stands for
“truncate”.

In all cases q and r will satisfy n = qd + r, and r will satisfy 0 ≤ |r| < |d|.

The q functions calculate only the quotient, the r functions only the remainder, and the qr

functions calculate both. Note that for qr the same variable cannot be passed for both q and
r, or results will be unpredictable.

For the ui variants the return value is the remainder, and in fact returning the remainder is
all the div_ui functions do. For tdiv and cdiv the remainder can be negative, so for those
the return value is the absolute value of the remainder.

For the 2exp variants the divisor is 2b. These functions are implemented as right shifts and
bit masks, but of course they round the same as the other functions.

For positive n both mpz_fdiv_q_2exp and mpz_tdiv_q_2exp are simple bitwise right shifts.
For negative n, mpz_fdiv_q_2exp is effectively an arithmetic right shift treating n as twos
complement the same as the bitwise logical functions do, whereas mpz_tdiv_q_2exp effec-
tively treats n as sign and magnitude.

[Function]void mpz_mod (mpz t r, const mpz t n, const mpz t d)
[Function]unsigned long int mpz_mod_ui (mpz t r, const mpz t n,

unsigned long int d)
Set r to n mod d. The sign of the divisor is ignored; the result is always non-negative.

mpz_mod_ui is identical to mpz_fdiv_r_ui above, returning the remainder as well as setting
r. See mpz_fdiv_ui above if only the return value is wanted.

[Function]void mpz_divexact (mpz t q, const mpz t n, const mpz t d)
[Function]void mpz_divexact_ui (mpz t q, const mpz t n, unsigned long d)

Set q to n/d. These functions produce correct results only when it is known in advance that
d divides n.

These routines are much faster than the other division functions, and are the best choice
when exact division is known to occur, for example reducing a rational to lowest terms.

[Function]int mpz_divisible_p (const mpz t n, const mpz t d)
[Function]int mpz_divisible_ui_p (const mpz t n, unsigned long int d)
[Function]int mpz_divisible_2exp_p (const mpz t n, mp bitcnt t b)

Return non-zero if n is exactly divisible by d, or in the case of mpz_divisible_2exp_p by 2b.

n is divisible by d if there exists an integer q satisfying n = qd. Unlike the other division
functions, d = 0 is accepted and following the rule it can be seen that only 0 is considered
divisible by 0.

[Function]int mpz_congruent_p (const mpz t n, const mpz t c, const mpz t d)
[Function]int mpz_congruent_ui_p (const mpz t n, unsigned long int c, unsigned

long int d)
[Function]int mpz_congruent_2exp_p (const mpz t n, const mpz t c, mp bitcnt t

b)
Return non-zero if n is congruent to c modulo d, or in the case of mpz_congruent_2exp_p
modulo 2b.

36 GNU MP 6.2.1

n is congruent to c mod d if there exists an integer q satisfying n = c + qd. Unlike the other
division functions, d = 0 is accepted and following the rule it can be seen that n and c are
considered congruent mod 0 only when exactly equal.

5.7 Exponentiation Functions

[Function]void mpz_powm (mpz t rop, const mpz t base, const mpz t exp, const
mpz t mod)

[Function]void mpz_powm_ui (mpz t rop, const mpz t base, unsigned long int exp,
const mpz t mod)

Set rop to baseexp mod mod.

Negative exp is supported if the inverse base−1 mod mod exists (see mpz_invert in Section 5.9
[Number Theoretic Functions], page 37). If an inverse doesn’t exist then a divide by zero is
raised.

[Function]void mpz_powm_sec (mpz t rop, const mpz t base, const mpz t exp,
const mpz t mod)

Set rop to baseexp mod mod.

It is required that exp > 0 and that mod is odd.

This function is designed to take the same time and have the same cache access patterns
for any two same-size arguments, assuming that function arguments are placed at the same
position and that the machine state is identical upon function entry. This function is intended
for cryptographic purposes, where resilience to side-channel attacks is desired.

[Function]void mpz_pow_ui (mpz t rop, const mpz t base, unsigned long int exp)
[Function]void mpz_ui_pow_ui (mpz t rop, unsigned long int base, unsigned long

int exp)
Set rop to baseexp. The case 00 yields 1.

5.8 Root Extraction Functions

[Function]int mpz_root (mpz t rop, const mpz t op, unsigned long int n)
Set rop to b n

√
opc, the truncated integer part of the nth root of op. Return non-zero if the

computation was exact, i.e., if op is rop to the nth power.

[Function]void mpz_rootrem (mpz t root, mpz t rem, const mpz t u, unsigned
long int n)

Set root to b n
√
uc, the truncated integer part of the nth root of u. Set rem to the remainder,

(u− rootn).

[Function]void mpz_sqrt (mpz t rop, const mpz t op)
Set rop to b√opc, the truncated integer part of the square root of op.

[Function]void mpz_sqrtrem (mpz t rop1, mpz t rop2, const mpz t op)
Set rop1 to b√opc, like mpz_sqrt. Set rop2 to the remainder (op − rop12), which will be
zero if op is a perfect square.

If rop1 and rop2 are the same variable, the results are undefined.

Chapter 5: Integer Functions 37

[Function]int mpz_perfect_power_p (const mpz t op)
Return non-zero if op is a perfect power, i.e., if there exist integers a and b, with b > 1, such
that op = ab.

Under this definition both 0 and 1 are considered to be perfect powers. Negative values of
op are accepted, but of course can only be odd perfect powers.

[Function]int mpz_perfect_square_p (const mpz t op)
Return non-zero if op is a perfect square, i.e., if the square root of op is an integer. Under
this definition both 0 and 1 are considered to be perfect squares.

5.9 Number Theoretic Functions

[Function]int mpz_probab_prime_p (const mpz t n, int reps)
Determine whether n is prime. Return 2 if n is definitely prime, return 1 if n is probably
prime (without being certain), or return 0 if n is definitely non-prime.

This function performs some trial divisions, a Baillie-PSW probable prime test, then reps-24
Miller-Rabin probabilistic primality tests. A higher reps value will reduce the chances of a
non-prime being identified as “probably prime”. A composite number will be identified as
a prime with an asymptotic probability of less than 4−reps. Reasonable values of reps are
between 15 and 50.

GMP versions up to and including 6.1.2 did not use the Baillie-PSW primality test. In those
older versions of GMP, this function performed reps Miller-Rabin tests.

[Function]void mpz_nextprime (mpz t rop, const mpz t op)
Set rop to the next prime greater than op.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s
adequate, the chance of a composite passing will be extremely small.

[Function]void mpz_gcd (mpz t rop, const mpz t op1, const mpz t op2)
Set rop to the greatest common divisor of op1 and op2. The result is always positive even if
one or both input operands are negative. Except if both inputs are zero; then this function
defines gcd(0, 0) = 0.

[Function]unsigned long int mpz_gcd_ui (mpz t rop, const mpz t op1, unsigned
long int op2)

Compute the greatest common divisor of op1 and op2. If rop is not NULL, store the result
there.

If the result is small enough to fit in an unsigned long int, it is returned. If the result does
not fit, 0 is returned, and the result is equal to the argument op1. Note that the result will
always fit if op2 is non-zero.

[Function]void mpz_gcdext (mpz t g, mpz t s, mpz t t, const mpz t a, const
mpz t b)

Set g to the greatest common divisor of a and b, and in addition set s and t to coefficients
satisfying as + bt = g . The value in g is always positive, even if one or both of a and b
are negative (or zero if both inputs are zero). The values in s and t are chosen such that
normally, |s| < |b|/(2g) and |t| < |a|/(2g), and these relations define s and t uniquely. There
are a few exceptional cases:

If |a| = |b|, then s = 0, t = sgn(b).

38 GNU MP 6.2.1

Otherwise, s = sgn(a) if b = 0 or |b| = 2g , and t = sgn(b) if a = 0 or |a| = 2g .

In all cases, s = 0 if and only if g = |b|, i.e., if b divides a or a = b = 0.

If t or g is NULL then that value is not computed.

[Function]void mpz_lcm (mpz t rop, const mpz t op1, const mpz t op2)
[Function]void mpz_lcm_ui (mpz t rop, const mpz t op1, unsigned long op2)

Set rop to the least common multiple of op1 and op2. rop is always positive, irrespective of
the signs of op1 and op2. rop will be zero if either op1 or op2 is zero.

[Function]int mpz_invert (mpz t rop, const mpz t op1, const mpz t op2)
Compute the inverse of op1 modulo op2 and put the result in rop. If the inverse exists, the
return value is non-zero and rop will satisfy 0 ≤ rop < |op2| (with rop = 0 possible only
when |op2| = 1, i.e., in the somewhat degenerate zero ring). If an inverse doesn’t exist the
return value is zero and rop is undefined. The behaviour of this function is undefined when
op2 is zero.

[Function]int mpz_jacobi (const mpz t a, const mpz t b)
Calculate the Jacobi symbol

(
a
b

)
. This is defined only for b odd.

[Function]int mpz_legendre (const mpz t a, const mpz t p)

Calculate the Legendre symbol
(

a
p

)
. This is defined only for p an odd positive prime, and

for such p it’s identical to the Jacobi symbol.

[Function]int mpz_kronecker (const mpz t a, const mpz t b)
[Function]int mpz_kronecker_si (const mpz t a, long b)
[Function]int mpz_kronecker_ui (const mpz t a, unsigned long b)
[Function]int mpz_si_kronecker (long a, const mpz t b)
[Function]int mpz_ui_kronecker (unsigned long a, const mpz t b)

Calculate the Jacobi symbol
(
a
b

)
with the Kronecker extension

(
a
2

)
=
(
2
a

)
when a odd, or(

a
2

)
= 0 when a even.

When b is odd the Jacobi symbol and Kronecker symbol are identical, so mpz_kronecker_ui

etc can be used for mixed precision Jacobi symbols too.

For more information see Henri Cohen section 1.4.2 (see Appendix B [References], page 130),
or any number theory textbook. See also the example program demos/qcn.c which uses
mpz_kronecker_ui.

[Function]mp_bitcnt_t mpz_remove (mpz t rop, const mpz t op, const mpz t f)
Remove all occurrences of the factor f from op and store the result in rop. The return value
is how many such occurrences were removed.

[Function]void mpz_fac_ui (mpz t rop, unsigned long int n)
[Function]void mpz_2fac_ui (mpz t rop, unsigned long int n)
[Function]void mpz_mfac_uiui (mpz t rop, unsigned long int n, unsigned long int

m)
Set rop to the factorial of n: mpz_fac_ui computes the plain factorial n!, mpz_2fac_ui

computes the double-factorial n!!, and mpz_mfac_uiui the m-multi-factorial n!(m).

[Function]void mpz_primorial_ui (mpz t rop, unsigned long int n)
Set rop to the primorial of n, i.e. the product of all positive prime numbers ≤ n.

Chapter 5: Integer Functions 39

[Function]void mpz_bin_ui (mpz t rop, const mpz t n, unsigned long int k)
[Function]void mpz_bin_uiui (mpz t rop, unsigned long int n,

unsigned long int k)
Compute the binomial coefficient

(n
k

)
and store the result in rop. Negative values of n are

supported by mpz_bin_ui, using the identity
(−n

k

)
= (−1)k

(
n+k−1

k

)
, see Knuth volume 1

section 1.2.6 part G.

[Function]void mpz_fib_ui (mpz t fn, unsigned long int n)
[Function]void mpz_fib2_ui (mpz t fn, mpz t fnsub1, unsigned long int n)

mpz_fib_ui sets fn to to Fn, the n’th Fibonacci number. mpz_fib2_ui sets fn to Fn, and
fnsub1 to Fn−1.

These functions are designed for calculating isolated Fibonacci numbers. When a sequence of
values is wanted it’s best to start with mpz_fib2_ui and iterate the defining Fn+1 = Fn+Fn−1
or similar.

[Function]void mpz_lucnum_ui (mpz t ln, unsigned long int n)
[Function]void mpz_lucnum2_ui (mpz t ln, mpz t lnsub1, unsigned long int n)

mpz_lucnum_ui sets ln to to Ln, the n’th Lucas number. mpz_lucnum2_ui sets ln to Ln, and
lnsub1 to Ln−1.

These functions are designed for calculating isolated Lucas numbers. When a sequence of
values is wanted it’s best to start with mpz_lucnum2_ui and iterate the defining Ln+1 =
Ln + Ln−1 or similar.

The Fibonacci numbers and Lucas numbers are related sequences, so it’s never necessary
to call both mpz_fib2_ui and mpz_lucnum2_ui. The formulas for going from Fibonacci to
Lucas can be found in Section 15.7.5 [Lucas Numbers Algorithm], page 115, the reverse is
straightforward too.

5.10 Comparison Functions

[Function]int mpz_cmp (const mpz t op1, const mpz t op2)
[Function]int mpz_cmp_d (const mpz t op1, double op2)

[Macro]int mpz_cmp_si (const mpz t op1, signed long int op2)
[Macro]int mpz_cmp_ui (const mpz t op1, unsigned long int op2)

Compare op1 and op2. Return a positive value if op1 > op2, zero if op1 = op2, or a negative
value if op1 < op2.

mpz_cmp_ui and mpz_cmp_si are macros and will evaluate their arguments more than once.
mpz_cmp_d can be called with an infinity, but results are undefined for a NaN.

[Function]int mpz_cmpabs (const mpz t op1, const mpz t op2)
[Function]int mpz_cmpabs_d (const mpz t op1, double op2)
[Function]int mpz_cmpabs_ui (const mpz t op1, unsigned long int op2)

Compare the absolute values of op1 and op2. Return a positive value if |op1| > |op2|, zero
if |op1| = |op2|, or a negative value if |op1| < |op2|.

mpz_cmpabs_d can be called with an infinity, but results are undefined for a NaN.

[Macro]int mpz_sgn (const mpz t op)
Return +1 if op > 0, 0 if op = 0, and −1 if op < 0.

This function is actually implemented as a macro. It evaluates its argument multiple times.

40 GNU MP 6.2.1

5.11 Logical and Bit Manipulation Functions

These functions behave as if twos complement arithmetic were used (although sign-magnitude
is the actual implementation). The least significant bit is number 0.

[Function]void mpz_and (mpz t rop, const mpz t op1, const mpz t op2)
Set rop to op1 bitwise-and op2.

[Function]void mpz_ior (mpz t rop, const mpz t op1, const mpz t op2)
Set rop to op1 bitwise inclusive-or op2.

[Function]void mpz_xor (mpz t rop, const mpz t op1, const mpz t op2)
Set rop to op1 bitwise exclusive-or op2.

[Function]void mpz_com (mpz t rop, const mpz t op)
Set rop to the one’s complement of op.

[Function]mp_bitcnt_t mpz_popcount (const mpz t op)
If op ≥ 0, return the population count of op, which is the number of 1 bits in the binary
representation. If op < 0, the number of 1s is infinite, and the return value is the largest
possible mp_bitcnt_t.

[Function]mp_bitcnt_t mpz_hamdist (const mpz t op1, const mpz t op2)
If op1 and op2 are both ≥ 0 or both < 0, return the hamming distance between the two
operands, which is the number of bit positions where op1 and op2 have different bit values.
If one operand is ≥ 0 and the other < 0 then the number of bits different is infinite, and the
return value is the largest possible mp_bitcnt_t.

[Function]mp_bitcnt_t mpz_scan0 (const mpz t op, mp bitcnt t starting_bit)
[Function]mp_bitcnt_t mpz_scan1 (const mpz t op, mp bitcnt t starting_bit)

Scan op, starting from bit starting bit, towards more significant bits, until the first 0 or 1 bit
(respectively) is found. Return the index of the found bit.

If the bit at starting bit is already what’s sought, then starting bit is returned.

If there’s no bit found, then the largest possible mp_bitcnt_t is returned. This will happen
in mpz_scan0 past the end of a negative number, or mpz_scan1 past the end of a nonnegative
number.

[Function]void mpz_setbit (mpz t rop, mp bitcnt t bit_index)
Set bit bit index in rop.

[Function]void mpz_clrbit (mpz t rop, mp bitcnt t bit_index)
Clear bit bit index in rop.

[Function]void mpz_combit (mpz t rop, mp bitcnt t bit_index)
Complement bit bit index in rop.

[Function]int mpz_tstbit (const mpz t op, mp bitcnt t bit_index)
Test bit bit index in op and return 0 or 1 accordingly.

Chapter 5: Integer Functions 41

5.12 Input and Output Functions

Functions that perform input from a stdio stream, and functions that output to a stdio stream,
of mpz numbers. Passing a NULL pointer for a stream argument to any of these functions will
make them read from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include stdio.h before gmp.h, since that
will allow gmp.h to define prototypes for these functions.

See also Chapter 10 [Formatted Output], page 74, and Chapter 11 [Formatted Input], page 79.

[Function]size_t mpz_out_str (FILE *stream, int base, const mpz t op)
Output op on stdio stream stream, as a string of digits in base base. The base argument may
vary from 2 to 62 or from −2 to −36.

For base in the range 2..36, digits and lower-case letters are used; for −2..−36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

Return the number of bytes written, or if an error occurred, return 0.

[Function]size_t mpz_inp_str (mpz t rop, FILE *stream, int base)
Input a possibly white-space preceded string in base base from stdio stream stream, and put
the read integer in rop.

The base may vary from 2 to 62, or if base is 0, then the leading characters are used: 0x and
0X for hexadecimal, 0b and 0B for binary, 0 for octal, or decimal otherwise.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value. For
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

Return the number of bytes read, or if an error occurred, return 0.

[Function]size_t mpz_out_raw (FILE *stream, const mpz t op)
Output op on stdio stream stream, in raw binary format. The integer is written in a portable
format, with 4 bytes of size information, and that many bytes of limbs. Both the size and
the limbs are written in decreasing significance order (i.e., in big-endian).

The output can be read with mpz_inp_raw.

Return the number of bytes written, or if an error occurred, return 0.

The output of this can not be read by mpz_inp_raw from GMP 1, because of changes necessary
for compatibility between 32-bit and 64-bit machines.

[Function]size_t mpz_inp_raw (mpz t rop, FILE *stream)
Input from stdio stream stream in the format written by mpz_out_raw, and put the result in
rop. Return the number of bytes read, or if an error occurred, return 0.

This routine can read the output from mpz_out_raw also from GMP 1, in spite of changes
necessary for compatibility between 32-bit and 64-bit machines.

42 GNU MP 6.2.1

5.13 Random Number Functions

The random number functions of GMP come in two groups; older function that rely on a global
state, and newer functions that accept a state parameter that is read and modified. Please see
the Chapter 9 [Random Number Functions], page 72, for more information on how to use and
not to use random number functions.

[Function]void mpz_urandomb (mpz t rop, gmp randstate t state, mp bitcnt t n)
Generate a uniformly distributed random integer in the range 0 to 2n − 1, inclusive.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization], page 72) before invoking this function.

[Function]void mpz_urandomm (mpz t rop, gmp randstate t state, const mpz t n)
Generate a uniform random integer in the range 0 to n− 1, inclusive.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization], page 72) before invoking this function.

[Function]void mpz_rrandomb (mpz t rop, gmp randstate t state, mp bitcnt t n)
Generate a random integer with long strings of zeros and ones in the binary representation.
Useful for testing functions and algorithms, since this kind of random numbers have proven
to be more likely to trigger corner-case bugs. The random number will be in the range 2n−1

to 2n − 1, inclusive.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization], page 72) before invoking this function.

[Function]void mpz_random (mpz t rop, mp size t max_size)
Generate a random integer of at most max size limbs. The generated random number doesn’t
satisfy any particular requirements of randomness. Negative random numbers are generated
when max size is negative.

This function is obsolete. Use mpz_urandomb or mpz_urandomm instead.

[Function]void mpz_random2 (mpz t rop, mp size t max_size)
Generate a random integer of at most max size limbs, with long strings of zeros and ones
in the binary representation. Useful for testing functions and algorithms, since this kind of
random numbers have proven to be more likely to trigger corner-case bugs. Negative random
numbers are generated when max size is negative.

This function is obsolete. Use mpz_rrandomb instead.

5.14 Integer Import and Export

mpz_t variables can be converted to and from arbitrary words of binary data with the following
functions.

[Function]void mpz_import (mpz t rop, size t count, int order, size t size, int
endian, size t nails, const void *op)

Set rop from an array of word data at op.

The parameters specify the format of the data. count many words are read, each size bytes.
order can be 1 for most significant word first or -1 for least significant first. Within each

Chapter 5: Integer Functions 43

word endian can be 1 for most significant byte first, -1 for least significant first, or 0 for the
native endianness of the host CPU. The most significant nails bits of each word are skipped,
this can be 0 to use the full words.

There is no sign taken from the data, rop will simply be a positive integer. An application
can handle any sign itself, and apply it for instance with mpz_neg.

There are no data alignment restrictions on op, any address is allowed.

Here’s an example converting an array of unsigned long data, most significant element first,
and host byte order within each value.

unsigned long a[20];

/* Initialize z and a */

mpz_import (z, 20, 1, sizeof(a[0]), 0, 0, a);

This example assumes the full sizeof bytes are used for data in the given type, which is
usually true, and certainly true for unsigned long everywhere we know of. However on Cray
vector systems it may be noted that short and int are always stored in 8 bytes (and with
sizeof indicating that) but use only 32 or 46 bits. The nails feature can account for this,
by passing for instance 8*sizeof(int)-INT_BIT.

[Function]void * mpz_export (void *rop, size t *countp, int order, size t size,
int endian, size t nails, const mpz t op)

Fill rop with word data from op.

The parameters specify the format of the data produced. Each word will be size bytes and
order can be 1 for most significant word first or -1 for least significant first. Within each
word endian can be 1 for most significant byte first, -1 for least significant first, or 0 for the
native endianness of the host CPU. The most significant nails bits of each word are unused
and set to zero, this can be 0 to produce full words.

The number of words produced is written to *countp, or countp can be NULL to discard the
count. rop must have enough space for the data, or if rop is NULL then a result array of
the necessary size is allocated using the current GMP allocation function (see Chapter 13
[Custom Allocation], page 92). In either case the return value is the destination used, either
rop or the allocated block.

If op is non-zero then the most significant word produced will be non-zero. If op is zero then
the count returned will be zero and nothing written to rop. If rop is NULL in this case, no
block is allocated, just NULL is returned.

The sign of op is ignored, just the absolute value is exported. An application can use mpz_sgn
to get the sign and handle it as desired. (see Section 5.10 [Integer Comparisons], page 39)

There are no data alignment restrictions on rop, any address is allowed.

When an application is allocating space itself the required size can be determined with a
calculation like the following. Since mpz_sizeinbase always returns at least 1, count here
will be at least one, which avoids any portability problems with malloc(0), though if z is
zero no space at all is actually needed (or written).

numb = 8*size - nail;

count = (mpz_sizeinbase (z, 2) + numb-1) / numb;

p = malloc (count * size);

44 GNU MP 6.2.1

5.15 Miscellaneous Functions

[Function]int mpz_fits_ulong_p (const mpz t op)
[Function]int mpz_fits_slong_p (const mpz t op)
[Function]int mpz_fits_uint_p (const mpz t op)
[Function]int mpz_fits_sint_p (const mpz t op)
[Function]int mpz_fits_ushort_p (const mpz t op)
[Function]int mpz_fits_sshort_p (const mpz t op)

Return non-zero iff the value of op fits in an unsigned long int, signed long int, unsigned
int, signed int, unsigned short int, or signed short int, respectively. Otherwise, re-
turn zero.

[Macro]int mpz_odd_p (const mpz t op)
[Macro]int mpz_even_p (const mpz t op)

Determine whether op is odd or even, respectively. Return non-zero if yes, zero if no. These
macros evaluate their argument more than once.

[Function]size_t mpz_sizeinbase (const mpz t op, int base)
Return the size of op measured in number of digits in the given base. base can vary from 2
to 62. The sign of op is ignored, just the absolute value is used. The result will be either
exact or 1 too big. If base is a power of 2, the result is always exact. If op is zero the return
value is always 1.

This function can be used to determine the space required when converting op to a string. The
right amount of allocation is normally two more than the value returned by mpz_sizeinbase,
one extra for a minus sign and one for the null-terminator.

It will be noted that mpz_sizeinbase(op,2) can be used to locate the most significant 1 bit
in op, counting from 1. (Unlike the bitwise functions which start from 0, See Section 5.11
[Logical and Bit Manipulation Functions], page 40.)

5.16 Special Functions

The functions in this section are for various special purposes. Most applications will not need
them.

[Function]void mpz_array_init (mpz t integer_array, mp size t array_size,
mp size t fixed_num_bits)

This is an obsolete function. Do not use it.

[Function]void * _mpz_realloc (mpz t integer, mp size t new_alloc)
Change the space for integer to new alloc limbs. The value in integer is preserved if it fits,
or is set to 0 if not. The return value is not useful to applications and should be ignored.

mpz_realloc2 is the preferred way to accomplish allocation changes like this. mpz_realloc2
and _mpz_realloc are the same except that _mpz_realloc takes its size in limbs.

[Function]mp_limb_t mpz_getlimbn (const mpz t op, mp size t n)
Return limb number n from op. The sign of op is ignored, just the absolute value is used.
The least significant limb is number 0.

mpz_size can be used to find how many limbs make up op. mpz_getlimbn returns zero if n
is outside the range 0 to mpz_size(op)-1.

Chapter 5: Integer Functions 45

[Function]size_t mpz_size (const mpz t op)
Return the size of op measured in number of limbs. If op is zero, the returned value will be
zero.

[Function]const mp_limb_t * mpz_limbs_read (const mpz t x)
Return a pointer to the limb array representing the absolute value of x. The size of the array
is mpz_size(x). Intended for read access only.

[Function]mp_limb_t * mpz_limbs_write (mpz t x, mp size t n)
[Function]mp_limb_t * mpz_limbs_modify (mpz t x, mp size t n)

Return a pointer to the limb array, intended for write access. The array is reallocated as
needed, to make room for n limbs. Requires n > 0. The mpz_limbs_modify function returns
an array that holds the old absolute value of x, while mpz_limbs_write may destroy the old
value and return an array with unspecified contents.

[Function]void mpz_limbs_finish (mpz t x, mp size t s)
Updates the internal size field of x. Used after writing to the limb array pointer returned
by mpz_limbs_write or mpz_limbs_modify is completed. The array should contain |s| valid
limbs, representing the new absolute value for x, and the sign of x is taken from the sign of
s. This function never reallocates x, so the limb pointer remains valid.

void foo (mpz_t x)

{

mp_size_t n, i;

mp_limb_t *xp;

n = mpz_size (x);

xp = mpz_limbs_modify (x, 2*n);

for (i = 0; i < n; i++)

xp[n+i] = xp[n-1-i];

mpz_limbs_finish (x, mpz_sgn (x) < 0 ? - 2*n : 2*n);

}

[Function]mpz_srcptr mpz_roinit_n (mpz t x, const mp limb t *xp, mp size t
xs)

Special initialization of x, using the given limb array and size. x should be treated as read-
only: it can be passed safely as input to any mpz function, but not as an output. The array
xp must point to at least a readable limb, its size is |xs|, and the sign of x is the sign of xs.
For convenience, the function returns x, but cast to a const pointer type.

void foo (mpz_t x)

{

static const mp_limb_t y[3] = { 0x1, 0x2, 0x3 };

mpz_t tmp;

mpz_add (x, x, mpz_roinit_n (tmp, y, 3));

}

[Macro]mpz_t MPZ_ROINIT_N (mp limb t *xp, mp size t xs)
This macro expands to an initializer which can be assigned to an mpz t variable. The
limb array xp must point to at least a readable limb, moreover, unlike the mpz_roinit_n

function, the array must be normalized: if xs is non-zero, then xp[|xs|−1] must be non-zero.
Intended primarily for constant values. Using it for non-constant values requires a C compiler
supporting C99.

46 GNU MP 6.2.1

void foo (mpz_t x)

{

static const mp_limb_t ya[3] = { 0x1, 0x2, 0x3 };

static const mpz_t y = MPZ_ROINIT_N ((mp_limb_t *) ya, 3);

mpz_add (x, x, y);

}

47

6 Rational Number Functions

This chapter describes the GMP functions for performing arithmetic on rational numbers. These
functions start with the prefix mpq_.

Rational numbers are stored in objects of type mpq_t.

All rational arithmetic functions assume operands have a canonical form, and canonicalize their
result. The canonical form means that the denominator and the numerator have no common
factors, and that the denominator is positive. Zero has the unique representation 0/1.

Pure assignment functions do not canonicalize the assigned variable. It is the responsibility of
the user to canonicalize the assigned variable before any arithmetic operations are performed on
that variable.

[Function]void mpq_canonicalize (mpq t op)
Remove any factors that are common to the numerator and denominator of op, and make
the denominator positive.

6.1 Initialization and Assignment Functions

[Function]void mpq_init (mpq t x)
Initialize x and set it to 0/1. Each variable should normally only be initialized once, or at
least cleared out (using the function mpq_clear) between each initialization.

[Function]void mpq_inits (mpq t x, ...)
Initialize a NULL-terminated list of mpq_t variables, and set their values to 0/1.

[Function]void mpq_clear (mpq t x)
Free the space occupied by x. Make sure to call this function for all mpq_t variables when
you are done with them.

[Function]void mpq_clears (mpq t x, ...)
Free the space occupied by a NULL-terminated list of mpq_t variables.

[Function]void mpq_set (mpq t rop, const mpq t op)
[Function]void mpq_set_z (mpq t rop, const mpz t op)

Assign rop from op.

[Function]void mpq_set_ui (mpq t rop, unsigned long int op1, unsigned long int
op2)

[Function]void mpq_set_si (mpq t rop, signed long int op1, unsigned long int op2)
Set the value of rop to op1/op2. Note that if op1 and op2 have common factors, rop has to
be passed to mpq_canonicalize before any operations are performed on rop.

[Function]int mpq_set_str (mpq t rop, const char *str, int base)
Set rop from a null-terminated string str in the given base.

The string can be an integer like “41” or a fraction like “41/152”. The fraction must be
in canonical form (see Chapter 6 [Rational Number Functions], page 47), or if not then
mpq_canonicalize must be called.

The numerator and optional denominator are parsed the same as in mpz_set_str (see
Section 5.2 [Assigning Integers], page 31). White space is allowed in the string, and is simply

48 GNU MP 6.2.1

ignored. The base can vary from 2 to 62, or if base is 0 then the leading characters are used:
0x or 0X for hex, 0b or 0B for binary, 0 for octal, or decimal otherwise. Note that this is done
separately for the numerator and denominator, so for instance 0xEF/100 is 239/100, whereas
0xEF/0x100 is 239/256.

The return value is 0 if the entire string is a valid number, or −1 if not.

[Function]void mpq_swap (mpq t rop1, mpq t rop2)
Swap the values rop1 and rop2 efficiently.

6.2 Conversion Functions

[Function]double mpq_get_d (const mpq t op)
Convert op to a double, truncating if necessary (i.e. rounding towards zero).

If the exponent from the conversion is too big or too small to fit a double then the result is
system dependent. For too big an infinity is returned when available. For too small 0.0 is
normally returned. Hardware overflow, underflow and denorm traps may or may not occur.

[Function]void mpq_set_d (mpq t rop, double op)
[Function]void mpq_set_f (mpq t rop, const mpf t op)

Set rop to the value of op. There is no rounding, this conversion is exact.

[Function]char * mpq_get_str (char *str, int base, const mpq t op)
Convert op to a string of digits in base base. The base argument may vary from 2 to 62 or
from −2 to −36. The string will be of the form ‘num/den’, or if the denominator is 1 then
just ‘num’.

For base in the range 2..36, digits and lower-case letters are used; for −2..−36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 13 [Custom Allocation], page 92). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of storage large enough for the result, that being

mpz_sizeinbase (mpq_numref(op), base)

+ mpz_sizeinbase (mpq_denref(op), base) + 3

The three extra bytes are for a possible minus sign, possible slash, and the null-terminator.

A pointer to the result string is returned, being either the allocated block, or the given str.

6.3 Arithmetic Functions

[Function]void mpq_add (mpq t sum, const mpq t addend1, const mpq t addend2)
Set sum to addend1 + addend2.

[Function]void mpq_sub (mpq t difference, const mpq t minuend, const mpq t
subtrahend)

Set difference to minuend − subtrahend.

Chapter 6: Rational Number Functions 49

[Function]void mpq_mul (mpq t product, const mpq t multiplier, const mpq t
multiplicand)

Set product to multiplier ×multiplicand.

[Function]void mpq_mul_2exp (mpq t rop, const mpq t op1, mp bitcnt t op2)
Set rop to op1 × 2op2.

[Function]void mpq_div (mpq t quotient, const mpq t dividend, const mpq t
divisor)

Set quotient to dividend/divisor.

[Function]void mpq_div_2exp (mpq t rop, const mpq t op1, mp bitcnt t op2)
Set rop to op1/2op2.

[Function]void mpq_neg (mpq t negated_operand, const mpq t operand)
Set negated operand to −operand.

[Function]void mpq_abs (mpq t rop, const mpq t op)
Set rop to the absolute value of op.

[Function]void mpq_inv (mpq t inverted_number, const mpq t number)
Set inverted number to 1/number. If the new denominator is zero, this routine will divide
by zero.

6.4 Comparison Functions

[Function]int mpq_cmp (const mpq t op1, const mpq t op2)
[Function]int mpq_cmp_z (const mpq t op1, const mpz t op2)

Compare op1 and op2. Return a positive value if op1 > op2, zero if op1 = op2, and a
negative value if op1 < op2.

To determine if two rationals are equal, mpq_equal is faster than mpq_cmp.

[Macro]int mpq_cmp_ui (const mpq t op1, unsigned long int num2, unsigned long
int den2)

[Macro]int mpq_cmp_si (const mpq t op1, long int num2, unsigned long int den2)
Compare op1 and num2/den2. Return a positive value if op1 > num2/den2, zero if op1 =
num2/den2, and a negative value if op1 < num2/den2.

num2 and den2 are allowed to have common factors.

These functions are implemented as a macros and evaluate their arguments multiple times.

[Macro]int mpq_sgn (const mpq t op)
Return +1 if op > 0, 0 if op = 0, and −1 if op < 0.

This function is actually implemented as a macro. It evaluates its argument multiple times.

[Function]int mpq_equal (const mpq t op1, const mpq t op2)
Return non-zero if op1 and op2 are equal, zero if they are non-equal. Although mpq_cmp can
be used for the same purpose, this function is much faster.

50 GNU MP 6.2.1

6.5 Applying Integer Functions to Rationals

The set of mpq functions is quite small. In particular, there are few functions for either input
or output. The following functions give direct access to the numerator and denominator of an
mpq_t.

Note that if an assignment to the numerator and/or denominator could take an mpq_t out
of the canonical form described at the start of this chapter (see Chapter 6 [Rational Number
Functions], page 47) then mpq_canonicalize must be called before any other mpq functions are
applied to that mpq_t.

[Macro]mpz_t mpq_numref (const mpq t op)
[Macro]mpz_t mpq_denref (const mpq t op)

Return a reference to the numerator and denominator of op, respectively. The mpz functions
can be used on the result of these macros.

[Function]void mpq_get_num (mpz t numerator, const mpq t rational)
[Function]void mpq_get_den (mpz t denominator, const mpq t rational)
[Function]void mpq_set_num (mpq t rational, const mpz t numerator)
[Function]void mpq_set_den (mpq t rational, const mpz t denominator)

Get or set the numerator or denominator of a rational. These functions are equivalent to
calling mpz_set with an appropriate mpq_numref or mpq_denref. Direct use of mpq_numref
or mpq_denref is recommended instead of these functions.

6.6 Input and Output Functions

Functions that perform input from a stdio stream, and functions that output to a stdio stream,
of mpq numbers. Passing a NULL pointer for a stream argument to any of these functions will
make them read from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include stdio.h before gmp.h, since that
will allow gmp.h to define prototypes for these functions.

See also Chapter 10 [Formatted Output], page 74, and Chapter 11 [Formatted Input], page 79.

[Function]size_t mpq_out_str (FILE *stream, int base, const mpq t op)
Output op on stdio stream stream, as a string of digits in base base. The base argument may
vary from 2 to 62 or from −2 to −36. Output is in the form ‘num/den’ or if the denominator
is 1 then just ‘num’.

For base in the range 2..36, digits and lower-case letters are used; for −2..−36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

Return the number of bytes written, or if an error occurred, return 0.

[Function]size_t mpq_inp_str (mpq t rop, FILE *stream, int base)
Read a string of digits from stream and convert them to a rational in rop. Any initial white-
space characters are read and discarded. Return the number of characters read (including
white space), or 0 if a rational could not be read.

The input can be a fraction like ‘17/63’ or just an integer like ‘123’. Reading stops at the
first character not in this form, and white space is not permitted within the string. If the
input might not be in canonical form, then mpq_canonicalize must be called (see Chapter 6
[Rational Number Functions], page 47).

51

The base can be between 2 and 62, or can be 0 in which case the leading characters of the
string determine the base, ‘0x’ or ‘0X’ for hexadecimal, 0b and 0B for binary, ‘0’ for octal,
or decimal otherwise. The leading characters are examined separately for the numerator and
denominator of a fraction, so for instance ‘0x10/11’ is 16/11, whereas ‘0x10/0x11’ is 16/17.

52 GNU MP 6.2.1

7 Floating-point Functions

GMP floating point numbers are stored in objects of type mpf_t and functions operating on
them have an mpf_ prefix.

The mantissa of each float has a user-selectable precision, in practice only limited by available
memory. Each variable has its own precision, and that can be increased or decreased at any
time. This selectable precision is a minimum value, GMP rounds it up to a whole limb.

The accuracy of a calculation is determined by the priorly set precision of the destination
variable and the numeric values of the input variables. Input variables’ set precisions do not
affect calculations (except indirectly as their values might have been affected when they were
assigned).

The exponent of each float has fixed precision, one machine word on most systems. In the
current implementation the exponent is a count of limbs, so for example on a 32-bit system this
means a range of roughly 2−68719476768 to 268719476736, or on a 64-bit system this will be much
greater. Note however that mpf_get_str can only return an exponent which fits an mp_exp_t

and currently mpf_set_str doesn’t accept exponents bigger than a long.

Each variable keeps track of the mantissa data actually in use. This means that if a float is
exactly represented in only a few bits then only those bits will be used in a calculation, even if
the variable’s selected precision is high. This is a performance optimization; it does not affect
the numeric results.

Internally, GMP sometimes calculates with higher precision than that of the destination variable
in order to limit errors. Final results are always truncated to the destination variable’s precision.

The mantissa is stored in binary. One consequence of this is that decimal fractions like 0.1
cannot be represented exactly. The same is true of plain IEEE double floats. This makes both
highly unsuitable for calculations involving money or other values that should be exact decimal
fractions. (Suitably scaled integers, or perhaps rationals, are better choices.)

The mpf functions and variables have no special notion of infinity or not-a-number, and appli-
cations must take care not to overflow the exponent or results will be unpredictable.

Note that the mpf functions are not intended as a smooth extension to IEEE P754 arithmetic.
In particular results obtained on one computer often differ from the results on a computer with
a different word size.

New projects should consider using the GMP extension library MPFR (http://mpfr.org)
instead. MPFR provides well-defined precision and accurate rounding, and thereby naturally
extends IEEE P754.

7.1 Initialization Functions

[Function]void mpf_set_default_prec (mp bitcnt t prec)
Set the default precision to be at least prec bits. All subsequent calls to mpf_init will use
this precision, but previously initialized variables are unaffected.

[Function]mp_bitcnt_t mpf_get_default_prec (void)
Return the default precision actually used.

An mpf_t object must be initialized before storing the first value in it. The functions mpf_init
and mpf_init2 are used for that purpose.

http://mpfr.org

Chapter 7: Floating-point Functions 53

[Function]void mpf_init (mpf t x)
Initialize x to 0. Normally, a variable should be initialized once only or at least be cleared,
using mpf_clear, between initializations. The precision of x is undefined unless a default
precision has already been established by a call to mpf_set_default_prec.

[Function]void mpf_init2 (mpf t x, mp bitcnt t prec)
Initialize x to 0 and set its precision to be at least prec bits. Normally, a variable should be
initialized once only or at least be cleared, using mpf_clear, between initializations.

[Function]void mpf_inits (mpf t x, ...)
Initialize a NULL-terminated list of mpf_t variables, and set their values to 0. The precision
of the initialized variables is undefined unless a default precision has already been established
by a call to mpf_set_default_prec.

[Function]void mpf_clear (mpf t x)
Free the space occupied by x. Make sure to call this function for all mpf_t variables when
you are done with them.

[Function]void mpf_clears (mpf t x, ...)
Free the space occupied by a NULL-terminated list of mpf_t variables.

Here is an example on how to initialize floating-point variables:

{

mpf_t x, y;

mpf_init (x); /* use default precision */

mpf_init2 (y, 256); /* precision at least 256 bits */

...

/* Unless the program is about to exit, do ... */

mpf_clear (x);

mpf_clear (y);

}

The following three functions are useful for changing the precision during a calculation. A typical
use would be for adjusting the precision gradually in iterative algorithms like Newton-Raphson,
making the computation precision closely match the actual accurate part of the numbers.

[Function]mp_bitcnt_t mpf_get_prec (const mpf t op)
Return the current precision of op, in bits.

[Function]void mpf_set_prec (mpf t rop, mp bitcnt t prec)
Set the precision of rop to be at least prec bits. The value in rop will be truncated to the
new precision.

This function requires a call to realloc, and so should not be used in a tight loop.

[Function]void mpf_set_prec_raw (mpf t rop, mp bitcnt t prec)
Set the precision of rop to be at least prec bits, without changing the memory allocated.

prec must be no more than the allocated precision for rop, that being the precision when rop
was initialized, or in the most recent mpf_set_prec.

The value in rop is unchanged, and in particular if it had a higher precision than prec it will
retain that higher precision. New values written to rop will use the new prec.

54 GNU MP 6.2.1

Before calling mpf_clear or the full mpf_set_prec, another mpf_set_prec_raw call must be
made to restore rop to its original allocated precision. Failing to do so will have unpredictable
results.

mpf_get_prec can be used before mpf_set_prec_raw to get the original allocated precision.
After mpf_set_prec_raw it reflects the prec value set.

mpf_set_prec_raw is an efficient way to use an mpf_t variable at different precisions during
a calculation, perhaps to gradually increase precision in an iteration, or just to use various
different precisions for different purposes during a calculation.

7.2 Assignment Functions

These functions assign new values to already initialized floats (see Section 7.1 [Initializing Floats],
page 52).

[Function]void mpf_set (mpf t rop, const mpf t op)
[Function]void mpf_set_ui (mpf t rop, unsigned long int op)
[Function]void mpf_set_si (mpf t rop, signed long int op)
[Function]void mpf_set_d (mpf t rop, double op)
[Function]void mpf_set_z (mpf t rop, const mpz t op)
[Function]void mpf_set_q (mpf t rop, const mpq t op)

Set the value of rop from op.

[Function]int mpf_set_str (mpf t rop, const char *str, int base)
Set the value of rop from the string in str. The string is of the form ‘M@N’ or, if the base is 10
or less, alternatively ‘MeN’. ‘M’ is the mantissa and ‘N’ is the exponent. The mantissa is always
in the specified base. The exponent is either in the specified base or, if base is negative, in
decimal. The decimal point expected is taken from the current locale, on systems providing
localeconv.

The argument base may be in the ranges 2 to 62, or −62 to −2. Negative values are used to
specify that the exponent is in decimal.

For bases up to 36, case is ignored; upper-case and lower-case letters have the same value; for
bases 37 to 62, upper-case letter represent the usual 10..35 while lower-case letter represent
36..61.

Unlike the corresponding mpz function, the base will not be determined from the leading
characters of the string if base is 0. This is so that numbers like ‘0.23’ are not interpreted
as octal.

White space is allowed in the string, and is simply ignored. [This is not really true; white-
space is ignored in the beginning of the string and within the mantissa, but not in other
places, such as after a minus sign or in the exponent. We are considering changing the
definition of this function, making it fail when there is any white-space in the input, since
that makes a lot of sense. Please tell us your opinion about this change. Do you really want
it to accept "3 14" as meaning 314 as it does now?]

This function returns 0 if the entire string is a valid number in base base. Otherwise it returns
−1.

[Function]void mpf_swap (mpf t rop1, mpf t rop2)
Swap rop1 and rop2 efficiently. Both the values and the precisions of the two variables are
swapped.

Chapter 7: Floating-point Functions 55

7.3 Combined Initialization and Assignment Functions

For convenience, GMP provides a parallel series of initialize-and-set functions which initialize the
output and then store the value there. These functions’ names have the form mpf_init_set...

Once the float has been initialized by any of the mpf_init_set... functions, it can be used as
the source or destination operand for the ordinary float functions. Don’t use an initialize-and-set
function on a variable already initialized!

[Function]void mpf_init_set (mpf t rop, const mpf t op)
[Function]void mpf_init_set_ui (mpf t rop, unsigned long int op)
[Function]void mpf_init_set_si (mpf t rop, signed long int op)
[Function]void mpf_init_set_d (mpf t rop, double op)

Initialize rop and set its value from op.

The precision of rop will be taken from the active default precision, as set by mpf_set_

default_prec.

[Function]int mpf_init_set_str (mpf t rop, const char *str, int base)
Initialize rop and set its value from the string in str. See mpf_set_str above for details on
the assignment operation.

Note that rop is initialized even if an error occurs. (I.e., you have to call mpf_clear for it.)

The precision of rop will be taken from the active default precision, as set by mpf_set_

default_prec.

7.4 Conversion Functions

[Function]double mpf_get_d (const mpf t op)
Convert op to a double, truncating if necessary (i.e. rounding towards zero).

If the exponent in op is too big or too small to fit a double then the result is system dependent.
For too big an infinity is returned when available. For too small 0.0 is normally returned.
Hardware overflow, underflow and denorm traps may or may not occur.

[Function]double mpf_get_d_2exp (signed long int *exp, const mpf t op)
Convert op to a double, truncating if necessary (i.e. rounding towards zero), and with an
exponent returned separately.

The return value is in the range 0.5 ≤ |d| < 1 and the exponent is stored to *exp. d × 2exp

is the (truncated) op value. If op is zero, the return is 0.0 and 0 is stored to *exp.

This is similar to the standard C frexp function (see Section “Normalization Functions” in
The GNU C Library Reference Manual).

[Function]long mpf_get_si (const mpf t op)
[Function]unsigned long mpf_get_ui (const mpf t op)

Convert op to a long or unsigned long, truncating any fraction part. If op is too big for
the return type, the result is undefined.

See also mpf_fits_slong_p and mpf_fits_ulong_p (see Section 7.8 [Miscellaneous Float
Functions], page 58).

56 GNU MP 6.2.1

[Function]char * mpf_get_str (char *str, mp exp t *expptr, int base, size t
n_digits, const mpf t op)

Convert op to a string of digits in base base. The base argument may vary from 2 to 62 or
from −2 to −36. Up to n digits digits will be generated. Trailing zeros are not returned.
No more digits than can be accurately represented by op are ever generated. If n digits is 0
then that accurate maximum number of digits are generated.

For base in the range 2..36, digits and lower-case letters are used; for −2..−36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

If str is NULL, the result string is allocated using the current allocation function (see
Chapter 13 [Custom Allocation], page 92). The block will be strlen(str)+1 bytes, that
being exactly enough for the string and null-terminator.

If str is not NULL, it should point to a block of n digits + 2 bytes, that being enough for
the mantissa, a possible minus sign, and a null-terminator. When n digits is 0 to get all
significant digits, an application won’t be able to know the space required, and str should be
NULL in that case.

The generated string is a fraction, with an implicit radix point immediately to the left of the
first digit. The applicable exponent is written through the expptr pointer. For example, the
number 3.1416 would be returned as string "31416" and exponent 1.

When op is zero, an empty string is produced and the exponent returned is 0.

A pointer to the result string is returned, being either the allocated block or the given str.

7.5 Arithmetic Functions

[Function]void mpf_add (mpf t rop, const mpf t op1, const mpf t op2)
[Function]void mpf_add_ui (mpf t rop, const mpf t op1, unsigned long int op2)

Set rop to op1 + op2.

[Function]void mpf_sub (mpf t rop, const mpf t op1, const mpf t op2)
[Function]void mpf_ui_sub (mpf t rop, unsigned long int op1, const mpf t op2)
[Function]void mpf_sub_ui (mpf t rop, const mpf t op1, unsigned long int op2)

Set rop to op1 − op2.

[Function]void mpf_mul (mpf t rop, const mpf t op1, const mpf t op2)
[Function]void mpf_mul_ui (mpf t rop, const mpf t op1, unsigned long int op2)

Set rop to op1 × op2.

Division is undefined if the divisor is zero, and passing a zero divisor to the divide functions
will make these functions intentionally divide by zero. This lets the user handle arithmetic
exceptions in these functions in the same manner as other arithmetic exceptions.

[Function]void mpf_div (mpf t rop, const mpf t op1, const mpf t op2)
[Function]void mpf_ui_div (mpf t rop, unsigned long int op1, const mpf t op2)
[Function]void mpf_div_ui (mpf t rop, const mpf t op1, unsigned long int op2)

Set rop to op1/op2.

[Function]void mpf_sqrt (mpf t rop, const mpf t op)
[Function]void mpf_sqrt_ui (mpf t rop, unsigned long int op)

Set rop to
√
op.

Chapter 7: Floating-point Functions 57

[Function]void mpf_pow_ui (mpf t rop, const mpf t op1, unsigned long int op2)
Set rop to op1op2.

[Function]void mpf_neg (mpf t rop, const mpf t op)
Set rop to −op.

[Function]void mpf_abs (mpf t rop, const mpf t op)
Set rop to the absolute value of op.

[Function]void mpf_mul_2exp (mpf t rop, const mpf t op1, mp bitcnt t op2)
Set rop to op1 × 2op2.

[Function]void mpf_div_2exp (mpf t rop, const mpf t op1, mp bitcnt t op2)
Set rop to op1/2op2.

7.6 Comparison Functions

[Function]int mpf_cmp (const mpf t op1, const mpf t op2)
[Function]int mpf_cmp_z (const mpf t op1, const mpz t op2)
[Function]int mpf_cmp_d (const mpf t op1, double op2)
[Function]int mpf_cmp_ui (const mpf t op1, unsigned long int op2)
[Function]int mpf_cmp_si (const mpf t op1, signed long int op2)

Compare op1 and op2. Return a positive value if op1 > op2, zero if op1 = op2, and a
negative value if op1 < op2.

mpf_cmp_d can be called with an infinity, but results are undefined for a NaN.

[Function]int mpf_eq (const mpf t op1, const mpf t op2, mp bitcnt t op3)
This function is mathematically ill-defined and should not be used.

Return non-zero if the first op3 bits of op1 and op2 are equal, zero otherwise. Note that
numbers like e.g., 256 (binary 100000000) and 255 (binary 11111111) will never be equal by
this function’s measure, and furthermore that 0 will only be equal to itself.

[Function]void mpf_reldiff (mpf t rop, const mpf t op1, const mpf t op2)
Compute the relative difference between op1 and op2 and store the result in rop. This is
|op1 − op2|/op1.

[Macro]int mpf_sgn (const mpf t op)
Return +1 if op > 0, 0 if op = 0, and −1 if op < 0.

This function is actually implemented as a macro. It evaluates its argument multiple times.

7.7 Input and Output Functions

Functions that perform input from a stdio stream, and functions that output to a stdio stream,
of mpf numbers. Passing a NULL pointer for a stream argument to any of these functions will
make them read from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include stdio.h before gmp.h, since that
will allow gmp.h to define prototypes for these functions.

See also Chapter 10 [Formatted Output], page 74, and Chapter 11 [Formatted Input], page 79.

58 GNU MP 6.2.1

[Function]size_t mpf_out_str (FILE *stream, int base, size t n_digits, const
mpf t op)

Print op to stream, as a string of digits. Return the number of bytes written, or if an error
occurred, return 0.

The mantissa is prefixed with an ‘0.’ and is in the given base, which may vary from 2 to 62
or from −2 to −36. An exponent is then printed, separated by an ‘e’, or if the base is greater
than 10 then by an ‘@’. The exponent is always in decimal. The decimal point follows the
current locale, on systems providing localeconv.

For base in the range 2..36, digits and lower-case letters are used; for −2..−36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in
that significance order) are used.

Up to n digits will be printed from the mantissa, except that no more digits than are accu-
rately representable by op will be printed. n digits can be 0 to select that accurate maximum.

[Function]size_t mpf_inp_str (mpf t rop, FILE *stream, int base)
Read a string in base base from stream, and put the read float in rop. The string is of
the form ‘M@N’ or, if the base is 10 or less, alternatively ‘MeN’. ‘M’ is the mantissa and ‘N’ is
the exponent. The mantissa is always in the specified base. The exponent is either in the
specified base or, if base is negative, in decimal. The decimal point expected is taken from
the current locale, on systems providing localeconv.

The argument base may be in the ranges 2 to 36, or −36 to −2. Negative values are used to
specify that the exponent is in decimal.

Unlike the corresponding mpz function, the base will not be determined from the leading
characters of the string if base is 0. This is so that numbers like ‘0.23’ are not interpreted
as octal.

Return the number of bytes read, or if an error occurred, return 0.

7.8 Miscellaneous Functions

[Function]void mpf_ceil (mpf t rop, const mpf t op)
[Function]void mpf_floor (mpf t rop, const mpf t op)
[Function]void mpf_trunc (mpf t rop, const mpf t op)

Set rop to op rounded to an integer. mpf_ceil rounds to the next higher integer, mpf_floor
to the next lower, and mpf_trunc to the integer towards zero.

[Function]int mpf_integer_p (const mpf t op)
Return non-zero if op is an integer.

[Function]int mpf_fits_ulong_p (const mpf t op)
[Function]int mpf_fits_slong_p (const mpf t op)
[Function]int mpf_fits_uint_p (const mpf t op)
[Function]int mpf_fits_sint_p (const mpf t op)
[Function]int mpf_fits_ushort_p (const mpf t op)
[Function]int mpf_fits_sshort_p (const mpf t op)

Return non-zero if op would fit in the respective C data type, when truncated to an integer.

Chapter 7: Floating-point Functions 59

[Function]void mpf_urandomb (mpf t rop, gmp randstate t state, mp bitcnt t
nbits)

Generate a uniformly distributed random float in rop, such that 0 ≤ rop < 1, with nbits
significant bits in the mantissa or less if the precision of rop is smaller.

The variable state must be initialized by calling one of the gmp_randinit functions
(Section 9.1 [Random State Initialization], page 72) before invoking this function.

[Function]void mpf_random2 (mpf t rop, mp size t max_size, mp exp t exp)
Generate a random float of at most max size limbs, with long strings of zeros and ones
in the binary representation. The exponent of the number is in the interval −exp to exp
(in limbs). This function is useful for testing functions and algorithms, since these kind of
random numbers have proven to be more likely to trigger corner-case bugs. Negative random
numbers are generated when max size is negative.

60 GNU MP 6.2.1

8 Low-level Functions

This chapter describes low-level GMP functions, used to implement the high-level GMP func-
tions, but also intended for time-critical user code.

These functions start with the prefix mpn_.

The mpn functions are designed to be as fast as possible, not to provide a coherent calling
interface. The different functions have somewhat similar interfaces, but there are variations that
make them hard to use. These functions do as little as possible apart from the real multiple
precision computation, so that no time is spent on things that not all callers need.

A source operand is specified by a pointer to the least significant limb and a limb count. A
destination operand is specified by just a pointer. It is the responsibility of the caller to ensure
that the destination has enough space for storing the result.

With this way of specifying operands, it is possible to perform computations on subranges of an
argument, and store the result into a subrange of a destination.

A common requirement for all functions is that each source area needs at least one limb. No size
argument may be zero. Unless otherwise stated, in-place operations are allowed where source
and destination are the same, but not where they only partly overlap.

The mpn functions are the base for the implementation of the mpz_, mpf_, and mpq_ functions.

This example adds the number beginning at s1p and the number beginning at s2p and writes
the sum at destp. All areas have n limbs.

cy = mpn_add_n (destp, s1p, s2p, n)

It should be noted that the mpn functions make no attempt to identify high or low zero limbs
on their operands, or other special forms. On random data such cases will be unlikely and it’d
be wasteful for every function to check every time. An application knowing something about its
data can take steps to trim or perhaps split its calculations.

In the notation used below, a source operand is identified by the pointer to the least significant
limb, and the limb count in braces. For example, {s1p, s1n}.

[Function]mp_limb_t mpn_add_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Add {s1p, n} and {s2p, n}, and write the n least significant limbs of the result to rp. Return
carry, either 0 or 1.

This is the lowest-level function for addition. It is the preferred function for addition, since
it is written in assembly for most CPUs. For addition of a variable to itself (i.e., s1p equals
s2p) use mpn_lshift with a count of 1 for optimal speed.

[Function]mp_limb_t mpn_add_1 (mp limb t *rp, const mp limb t *s1p, mp size t
n, mp limb t s2limb)

Add {s1p, n} and s2limb, and write the n least significant limbs of the result to rp. Return
carry, either 0 or 1.

[Function]mp_limb_t mpn_add (mp limb t *rp, const mp limb t *s1p, mp size t
s1n, const mp limb t *s2p, mp size t s2n)

Add {s1p, s1n} and {s2p, s2n}, and write the s1n least significant limbs of the result to rp.
Return carry, either 0 or 1.

Chapter 8: Low-level Functions 61

This function requires that s1n is greater than or equal to s2n.

[Function]mp_limb_t mpn_sub_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Subtract {s2p, n} from {s1p, n}, and write the n least significant limbs of the result to rp.
Return borrow, either 0 or 1.

This is the lowest-level function for subtraction. It is the preferred function for subtraction,
since it is written in assembly for most CPUs.

[Function]mp_limb_t mpn_sub_1 (mp limb t *rp, const mp limb t *s1p, mp size t
n, mp limb t s2limb)

Subtract s2limb from {s1p, n}, and write the n least significant limbs of the result to rp.
Return borrow, either 0 or 1.

[Function]mp_limb_t mpn_sub (mp limb t *rp, const mp limb t *s1p, mp size t
s1n, const mp limb t *s2p, mp size t s2n)

Subtract {s2p, s2n} from {s1p, s1n}, and write the s1n least significant limbs of the result to
rp. Return borrow, either 0 or 1.

This function requires that s1n is greater than or equal to s2n.

[Function]mp_limb_t mpn_neg (mp limb t *rp, const mp limb t *sp, mp size t n)
Perform the negation of {sp, n}, and write the result to {rp, n}. This is equivalent to calling
mpn_sub_n with a n-limb zero minuend and passing {sp, n} as subtrahend. Return borrow,
either 0 or 1.

[Function]void mpn_mul_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Multiply {s1p, n} and {s2p, n}, and write the 2*n-limb result to rp.

The destination has to have space for 2*n limbs, even if the product’s most significant limb
is zero. No overlap is permitted between the destination and either source.

If the two input operands are the same, use mpn_sqr.

[Function]mp_limb_t mpn_mul (mp limb t *rp, const mp limb t *s1p, mp size t
s1n, const mp limb t *s2p, mp size t s2n)

Multiply {s1p, s1n} and {s2p, s2n}, and write the (s1n+s2n)-limb result to rp. Return the
most significant limb of the result.

The destination has to have space for s1n + s2n limbs, even if the product’s most significant
limb is zero. No overlap is permitted between the destination and either source.

This function requires that s1n is greater than or equal to s2n.

[Function]void mpn_sqr (mp limb t *rp, const mp limb t *s1p, mp size t n)
Compute the square of {s1p, n} and write the 2*n-limb result to rp.

The destination has to have space for 2n limbs, even if the result’s most significant limb is
zero. No overlap is permitted between the destination and the source.

62 GNU MP 6.2.1

[Function]mp_limb_t mpn_mul_1 (mp limb t *rp, const mp limb t *s1p, mp size t
n, mp limb t s2limb)

Multiply {s1p, n} by s2limb, and write the n least significant limbs of the product to rp.
Return the most significant limb of the product. {s1p, n} and {rp, n} are allowed to overlap
provided rp ≤ s1p.

This is a low-level function that is a building block for general multiplication as well as other
operations in GMP. It is written in assembly for most CPUs.

Don’t call this function if s2limb is a power of 2; use mpn_lshift with a count equal to the
logarithm of s2limb instead, for optimal speed.

[Function]mp_limb_t mpn_addmul_1 (mp limb t *rp, const mp limb t *s1p,
mp size t n, mp limb t s2limb)

Multiply {s1p, n} and s2limb, and add the n least significant limbs of the product to {rp, n}
and write the result to rp. Return the most significant limb of the product, plus carry-out
from the addition. {s1p, n} and {rp, n} are allowed to overlap provided rp ≤ s1p.

This is a low-level function that is a building block for general multiplication as well as other
operations in GMP. It is written in assembly for most CPUs.

[Function]mp_limb_t mpn_submul_1 (mp limb t *rp, const mp limb t *s1p,
mp size t n, mp limb t s2limb)

Multiply {s1p, n} and s2limb, and subtract the n least significant limbs of the product from
{rp, n} and write the result to rp. Return the most significant limb of the product, plus
borrow-out from the subtraction. {s1p, n} and {rp, n} are allowed to overlap provided
rp ≤ s1p.

This is a low-level function that is a building block for general multiplication and division as
well as other operations in GMP. It is written in assembly for most CPUs.

[Function]void mpn_tdiv_qr (mp limb t *qp, mp limb t *rp, mp size t qxn, const
mp limb t *np, mp size t nn, const mp limb t *dp, mp size t dn)

Divide {np, nn} by {dp, dn} and put the quotient at {qp, nn−dn+1} and the remainder at
{rp, dn}. The quotient is rounded towards 0.

No overlap is permitted between arguments, except that np might equal rp. The dividend
size nn must be greater than or equal to divisor size dn. The most significant limb of the
divisor must be non-zero. The qxn operand must be zero.

[Function]mp_limb_t mpn_divrem (mp limb t *r1p, mp size t qxn, mp limb t
*rs2p, mp size t rs2n, const mp limb t *s3p, mp size t s3n)

[This function is obsolete. Please call mpn_tdiv_qr instead for best performance.]

Divide {rs2p, rs2n} by {s3p, s3n}, and write the quotient at r1p, with the exception of the
most significant limb, which is returned. The remainder replaces the dividend at rs2p; it will
be s3n limbs long (i.e., as many limbs as the divisor).

In addition to an integer quotient, qxn fraction limbs are developed, and stored after the
integral limbs. For most usages, qxn will be zero.

It is required that rs2n is greater than or equal to s3n. It is required that the most significant
bit of the divisor is set.

If the quotient is not needed, pass rs2p + s3n as r1p. Aside from that special case, no overlap
between arguments is permitted.

Chapter 8: Low-level Functions 63

Return the most significant limb of the quotient, either 0 or 1.

The area at r1p needs to be rs2n − s3n + qxn limbs large.

[Function]mp_limb_t mpn_divrem_1 (mp limb t *r1p, mp size t qxn,
mp limb t *s2p, mp size t s2n, mp limb t s3limb)

[Macro]mp_limb_t mpn_divmod_1 (mp limb t *r1p, mp limb t *s2p,
mp size t s2n, mp limb t s3limb)

Divide {s2p, s2n} by s3limb, and write the quotient at r1p. Return the remainder.

The integer quotient is written to {r1p+qxn, s2n} and in addition qxn fraction limbs are
developed and written to {r1p, qxn}. Either or both s2n and qxn can be zero. For most
usages, qxn will be zero.

mpn_divmod_1 exists for upward source compatibility and is simply a macro calling mpn_

divrem_1 with a qxn of 0.

The areas at r1p and s2p have to be identical or completely separate, not partially overlap-
ping.

[Function]mp_limb_t mpn_divmod (mp limb t *r1p, mp limb t *rs2p, mp size t
rs2n, const mp limb t *s3p, mp size t s3n)

[This function is obsolete. Please call mpn_tdiv_qr instead for best performance.]

[Function]void mpn_divexact_1 (mp limb t * rp, const mp limb t * sp, mp size t
n, mp limb t d)

Divide {sp, n} by d, expecting it to divide exactly, and writing the result to {rp, n}. If d
doesn’t divide exactly, the value written to {rp, n} is undefined. The areas at rp and sp have
to be identical or completely separate, not partially overlapping.

[Macro]mp_limb_t mpn_divexact_by3 (mp limb t *rp, mp limb t *sp,
mp size t n)

[Function]mp_limb_t mpn_divexact_by3c (mp limb t *rp, mp limb t *sp,
mp size t n, mp limb t carry)

Divide {sp, n} by 3, expecting it to divide exactly, and writing the result to {rp, n}. If 3
divides exactly, the return value is zero and the result is the quotient. If not, the return value
is non-zero and the result won’t be anything useful.

mpn_divexact_by3c takes an initial carry parameter, which can be the return value from
a previous call, so a large calculation can be done piece by piece from low to high. mpn_

divexact_by3 is simply a macro calling mpn_divexact_by3c with a 0 carry parameter.

These routines use a multiply-by-inverse and will be faster than mpn_divrem_1 on CPUs with
fast multiplication but slow division.

The source a, result q, size n, initial carry i, and return value c satisfy cbn+a− i = 3q, where
b = 2GMP NUMB BITS. The return c is always 0, 1 or 2, and the initial carry i must also be 0,
1 or 2 (these are both borrows really). When c = 0 clearly q = (a − i)/3. When c 6= 0, the
remainder (a− i) mod 3 is given by 3− c, because b ≡ 1 mod 3 (when mp_bits_per_limb is
even, which is always so currently).

[Function]mp_limb_t mpn_mod_1 (const mp limb t *s1p, mp size t s1n, mp limb t
s2limb)

Divide {s1p, s1n} by s2limb, and return the remainder. s1n can be zero.

64 GNU MP 6.2.1

[Function]mp_limb_t mpn_lshift (mp limb t *rp, const mp limb t *sp, mp size t
n, unsigned int count)

Shift {sp, n} left by count bits, and write the result to {rp, n}. The bits shifted out at the
left are returned in the least significant count bits of the return value (the rest of the return
value is zero).

count must be in the range 1 to mp_bits_per_limb−1. The regions {sp, n} and {rp, n} may
overlap, provided rp ≥ sp.

This function is written in assembly for most CPUs.

[Function]mp_limb_t mpn_rshift (mp limb t *rp, const mp limb t *sp, mp size t
n, unsigned int count)

Shift {sp, n} right by count bits, and write the result to {rp, n}. The bits shifted out at the
right are returned in the most significant count bits of the return value (the rest of the return
value is zero).

count must be in the range 1 to mp_bits_per_limb−1. The regions {sp, n} and {rp, n} may
overlap, provided rp ≤ sp.

This function is written in assembly for most CPUs.

[Function]int mpn_cmp (const mp limb t *s1p, const mp limb t *s2p, mp size t n)
Compare {s1p, n} and {s2p, n} and return a positive value if s1 > s2, 0 if they are equal, or
a negative value if s1 < s2.

[Function]int mpn_zero_p (const mp limb t *sp, mp size t n)
Test {sp, n} and return 1 if the operand is zero, 0 otherwise.

[Function]mp_size_t mpn_gcd (mp limb t *rp, mp limb t *xp, mp size t xn,
mp limb t *yp, mp size t yn)

Set {rp, retval} to the greatest common divisor of {xp, xn} and {yp, yn}. The result can be
up to yn limbs, the return value is the actual number produced. Both source operands are
destroyed.

It is required that xn ≥ yn > 0, the most significant limb of {yp, yn} must be non-zero, and
at least one of the two operands must be odd. No overlap is permitted between {xp, xn} and
{yp, yn}.

[Function]mp_limb_t mpn_gcd_1 (const mp limb t *xp, mp size t xn, mp limb t
ylimb)

Return the greatest common divisor of {xp, xn} and ylimb. Both operands must be non-zero.

[Function]mp_size_t mpn_gcdext (mp limb t *gp, mp limb t *sp, mp size t *sn,
mp limb t *up, mp size t un, mp limb t *vp, mp size t vn)

Let U be defined by {up, un} and let V be defined by {vp, vn}.

Compute the greatest common divisor G of U and V . Compute a cofactor S such that
G = US + V T . The second cofactor T is not computed but can easily be obtained from
(G − US)/V (the division will be exact). It is required that un ≥ vn > 0, and the most
significant limb of {vp, vn} must be non-zero.

S satisfies S = 1 or |S| < V/(2G). S = 0 if and only if V divides U (i.e., G = V).

Chapter 8: Low-level Functions 65

Store G at gp and let the return value define its limb count. Store S at sp and let |*sn|
define its limb count. S can be negative; when this happens *sn will be negative. The area
at gp should have room for vn limbs and the area at sp should have room for vn+ 1 limbs.

Both source operands are destroyed.

Compatibility notes: GMP 4.3.0 and 4.3.1 defined S less strictly. Earlier as well as later GMP
releases define S as described here. GMP releases before GMP 4.3.0 required additional space
for both input and output areas. More precisely, the areas {up, un+1} and {vp, vn+1} were
destroyed (i.e. the operands plus an extra limb past the end of each), and the areas pointed
to by gp and sp should each have room for un+ 1 limbs.

[Function]mp_size_t mpn_sqrtrem (mp limb t *r1p, mp limb t *r2p, const
mp limb t *sp, mp size t n)

Compute the square root of {sp, n} and put the result at {r1p, dn/2e} and the remainder
at {r2p, retval}. r2p needs space for n limbs, but the return value indicates how many are
produced.

The most significant limb of {sp, n} must be non-zero. The areas {r1p, dn/2e} and {sp, n}
must be completely separate. The areas {r2p, n} and {sp, n} must be either identical or
completely separate.

If the remainder is not wanted then r2p can be NULL, and in this case the return value is zero
or non-zero according to whether the remainder would have been zero or non-zero.

A return value of zero indicates a perfect square. See also mpn_perfect_square_p.

[Function]size_t mpn_sizeinbase (const mp limb t *xp, mp size t n, int base)
Return the size of {xp,n} measured in number of digits in the given base. base can vary from
2 to 62. Requires n > 0 and xp[n − 1] > 0. The result will be either exact or 1 too big. If
base is a power of 2, the result is always exact.

[Function]mp_size_t mpn_get_str (unsigned char *str, int base, mp limb t *s1p,
mp size t s1n)

Convert {s1p, s1n} to a raw unsigned char array at str in base base, and return the number
of characters produced. There may be leading zeros in the string. The string is not in ASCII;
to convert it to printable format, add the ASCII codes for ‘0’ or ‘A’, depending on the base
and range. base can vary from 2 to 256.

The most significant limb of the input {s1p, s1n} must be non-zero. The input {s1p, s1n} is
clobbered, except when base is a power of 2, in which case it’s unchanged.

The area at str has to have space for the largest possible number represented by a s1n long
limb array, plus one extra character.

[Function]mp_size_t mpn_set_str (mp limb t *rp, const unsigned char *str,
size t strsize, int base)

Convert bytes {str,strsize} in the given base to limbs at rp.

str[0] is the most significant input byte and str[strsize− 1] is the least significant input byte.
Each byte should be a value in the range 0 to base − 1, not an ASCII character. base can
vary from 2 to 256.

The converted value is {rp,rn} where rn is the return value. If the most significant input
byte str[0] is non-zero, then rp[rn − 1] will be non-zero, else rp[rn − 1] and some number of
subsequent limbs may be zero.

66 GNU MP 6.2.1

The area at rp has to have space for the largest possible number with strsize digits in the
chosen base, plus one extra limb.

The input must have at least one byte, and no overlap is permitted between {str,strsize} and
the result at rp.

[Function]mp_bitcnt_t mpn_scan0 (const mp limb t *s1p, mp bitcnt t bit)
Scan s1p from bit position bit for the next clear bit.

It is required that there be a clear bit within the area at s1p at or beyond bit position bit,
so that the function has something to return.

[Function]mp_bitcnt_t mpn_scan1 (const mp limb t *s1p, mp bitcnt t bit)
Scan s1p from bit position bit for the next set bit.

It is required that there be a set bit within the area at s1p at or beyond bit position bit, so
that the function has something to return.

[Function]void mpn_random (mp limb t *r1p, mp size t r1n)
[Function]void mpn_random2 (mp limb t *r1p, mp size t r1n)

Generate a random number of length r1n and store it at r1p. The most significant limb
is always non-zero. mpn_random generates uniformly distributed limb data, mpn_random2
generates long strings of zeros and ones in the binary representation.

mpn_random2 is intended for testing the correctness of the mpn routines.

[Function]mp_bitcnt_t mpn_popcount (const mp limb t *s1p, mp size t n)
Count the number of set bits in {s1p, n}.

[Function]mp_bitcnt_t mpn_hamdist (const mp limb t *s1p, const mp limb t
*s2p, mp size t n)

Compute the hamming distance between {s1p, n} and {s2p, n}, which is the number of bit
positions where the two operands have different bit values.

[Function]int mpn_perfect_square_p (const mp limb t *s1p, mp size t n)
Return non-zero iff {s1p, n} is a perfect square. The most significant limb of the input {s1p,
n} must be non-zero.

[Function]void mpn_and_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Perform the bitwise logical and of {s1p, n} and {s2p, n}, and write the result to {rp, n}.

[Function]void mpn_ior_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Perform the bitwise logical inclusive or of {s1p, n} and {s2p, n}, and write the result to {rp,
n}.

[Function]void mpn_xor_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Perform the bitwise logical exclusive or of {s1p, n} and {s2p, n}, and write the result to {rp,
n}.

Chapter 8: Low-level Functions 67

[Function]void mpn_andn_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Perform the bitwise logical and of {s1p, n} and the bitwise complement of {s2p, n}, and write
the result to {rp, n}.

[Function]void mpn_iorn_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Perform the bitwise logical inclusive or of {s1p, n} and the bitwise complement of {s2p, n},
and write the result to {rp, n}.

[Function]void mpn_nand_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Perform the bitwise logical and of {s1p, n} and {s2p, n}, and write the bitwise complement
of the result to {rp, n}.

[Function]void mpn_nior_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Perform the bitwise logical inclusive or of {s1p, n} and {s2p, n}, and write the bitwise
complement of the result to {rp, n}.

[Function]void mpn_xnor_n (mp limb t *rp, const mp limb t *s1p, const
mp limb t *s2p, mp size t n)

Perform the bitwise logical exclusive or of {s1p, n} and {s2p, n}, and write the bitwise
complement of the result to {rp, n}.

[Function]void mpn_com (mp limb t *rp, const mp limb t *sp, mp size t n)
Perform the bitwise complement of {sp, n}, and write the result to {rp, n}.

[Function]void mpn_copyi (mp limb t *rp, const mp limb t *s1p, mp size t n)
Copy from {s1p, n} to {rp, n}, increasingly.

[Function]void mpn_copyd (mp limb t *rp, const mp limb t *s1p, mp size t n)
Copy from {s1p, n} to {rp, n}, decreasingly.

[Function]void mpn_zero (mp limb t *rp, mp size t n)
Zero {rp, n}.

8.1 Low-level functions for cryptography

The functions prefixed with mpn_sec_ and mpn_cnd_ are designed to perform the exact same
low-level operations and have the same cache access patterns for any two same-size arguments,
assuming that function arguments are placed at the same position and that the machine state is
identical upon function entry. These functions are intended for cryptographic purposes, where
resilience to side-channel attacks is desired.

These functions are less efficient than their “leaky” counterparts; their performance for operands
of the sizes typically used for cryptographic applications is between 15% and 100% worse. For
larger operands, these functions might be inadequate, since they rely on asymptotically elemen-
tary algorithms.

These functions do not make any explicit allocations. Those of these functions that need scratch
space accept a scratch space operand. This convention allows callers to keep sensitive data in

68 GNU MP 6.2.1

designated memory areas. Note however that compilers may choose to spill scalar values used
within these functions to their stack frame and that such scalars may contain sensitive data.

In addition to these specially crafted functions, the following mpn functions are naturally side-
channel resistant: mpn_add_n, mpn_sub_n, mpn_lshift, mpn_rshift, mpn_zero, mpn_copyi,
mpn_copyd, mpn_com, and the logical function (mpn_and_n, etc).

There are some exceptions from the side-channel resilience: (1) Some assembly implementations
of mpn_lshift identify shift-by-one as a special case. This is a problem iff the shift count is a
function of sensitive data. (2) Alpha ev6 and Pentium4 using 64-bit limbs have leaky mpn_add_n

and mpn_sub_n. (3) Alpha ev6 has a leaky mpn_mul_1 which also makes mpn_sec_mul on those
systems unsafe.

[Function]mp_limb_t mpn_cnd_add_n (mp limb t cnd, mp limb t *rp, const
mp limb t *s1p, const mp limb t *s2p, mp size t n)

[Function]mp_limb_t mpn_cnd_sub_n (mp limb t cnd, mp limb t *rp, const
mp limb t *s1p, const mp limb t *s2p, mp size t n)

These functions do conditional addition and subtraction. If cnd is non-zero, they produce
the same result as a regular mpn_add_n or mpn_sub_n, and if cnd is zero, they copy {s1p,n}
to the result area and return zero. The functions are designed to have timing and memory
access patterns depending only on size and location of the data areas, but independent of the
condition cnd. Like for mpn_add_n and mpn_sub_n, on most machines, the timing will also
be independent of the actual limb values.

[Function]mp_limb_t mpn_sec_add_1 (mp limb t *rp, const mp limb t *ap,
mp size t n, mp limb t b, mp limb t *tp)

[Function]mp_limb_t mpn_sec_sub_1 (mp limb t *rp, const mp limb t *ap,
mp size t n, mp limb t b, mp limb t *tp)

Set R to A + b or A - b, respectively, where R = {rp,n}, A = {ap,n}, and b is a single limb.
Returns carry.

These functions take O(N) time, unlike the leaky functions mpn_add_1 which are O(1) on av-
erage. They require scratch space of mpn_sec_add_1_itch(n) and mpn_sec_sub_1_itch(n)

limbs, respectively, to be passed in the tp parameter. The scratch space requirements are
guaranteed to be at most n limbs, and increase monotonously in the operand size.

[Function]void mpn_cnd_swap (mp limb t cnd, volatile mp limb t *ap, volatile
mp limb t *bp, mp size t n)

If cnd is non-zero, swaps the contents of the areas {ap,n} and {bp,n}. Otherwise, the areas are
left unmodified. Implemented using logical operations on the limbs, with the same memory
accesses independent of the value of cnd.

[Function]void mpn_sec_mul (mp limb t *rp, const mp limb t *ap, mp size t an,
const mp limb t *bp, mp size t bn, mp limb t *tp)

[Function]mp_size_t mpn_sec_mul_itch (mp size t an, mp size t bn)
Set R to A×B, where A = {ap,an}, B = {bp,bn}, and R = {rp,an+ bn}.

It is required that an ≥ bn > 0.

No overlapping between R and the input operands is allowed. For A = B, use mpn_sec_sqr

for optimal performance.

This function requires scratch space of mpn_sec_mul_itch(an, bn) limbs to be passed in the
tp parameter. The scratch space requirements are guaranteed to increase monotonously in
the operand sizes.

Chapter 8: Low-level Functions 69

[Function]void mpn_sec_sqr (mp limb t *rp, const mp limb t *ap, mp size t an,
mp limb t *tp)

[Function]mp_size_t mpn_sec_sqr_itch (mp size t an)
Set R to A2, where A = {ap,an}, and R = {rp,2an}.

It is required that an > 0.

No overlapping between R and the input operands is allowed.

This function requires scratch space of mpn_sec_sqr_itch(an) limbs to be passed in the tp
parameter. The scratch space requirements are guaranteed to increase monotonously in the
operand size.

[Function]void mpn_sec_powm (mp limb t *rp, const mp limb t *bp, mp size t bn,
const mp limb t *ep, mp bitcnt t enb, const mp limb t *mp, mp size t n,
mp limb t *tp)

[Function]mp_size_t mpn_sec_powm_itch (mp size t bn, mp bitcnt t enb, size t n)
Set R to BE mod M , where R = {rp,n}, M = {mp,n}, and E = {ep,denb/GMP NUMB BITSe}.

It is required that B > 0, that M > 0 is odd, and that E < 2enb, with enb > 0.

No overlapping between R and the input operands is allowed.

This function requires scratch space of mpn_sec_powm_itch(bn, enb, n) limbs to be passed
in the tp parameter. The scratch space requirements are guaranteed to increase monotonously
in the operand sizes.

[Function]void mpn_sec_tabselect (mp limb t *rp, const mp limb t *tab,
mp size t n, mp size t nents, mp size t which)

Select entry which from table tab, which has nents entries, each n limbs. Store the selected
entry at rp.

This function reads the entire table to avoid side-channel information leaks.

[Function]mp_limb_t mpn_sec_div_qr (mp limb t *qp, mp limb t *np, mp size t
nn, const mp limb t *dp, mp size t dn, mp limb t *tp)

[Function]mp_size_t mpn_sec_div_qr_itch (mp size t nn, mp size t dn)
Set Q to bN/Dc and R to N mod D, where N = {np,nn}, D = {dp,dn}, Q’s most significant
limb is the function return value and the remaining limbs are {qp,nn-dn}, and R = {np,dn}.

It is required that nn ≥ dn ≥ 1, and that dp[dn − 1] 6= 0. This does not imply that N ≥ D
since N might be zero-padded.

Note the overlapping between N and R. No other operand overlapping is allowed. The entire
space occupied by N is overwritten.

This function requires scratch space of mpn_sec_div_qr_itch(nn, dn) limbs to be passed in
the tp parameter.

[Function]void mpn_sec_div_r (mp limb t *np, mp size t nn, const mp limb t
*dp, mp size t dn, mp limb t *tp)

[Function]mp_size_t mpn_sec_div_r_itch (mp size t nn, mp size t dn)
Set R to N mod D, where N = {np,nn}, D = {dp,dn}, and R = {np,dn}.

It is required that nn ≥ dn ≥ 1, and that dp[dn − 1] 6= 0. This does not imply that N ≥ D
since N might be zero-padded.

70 GNU MP 6.2.1

Note the overlapping between N and R. No other operand overlapping is allowed. The entire
space occupied by N is overwritten.

This function requires scratch space of mpn_sec_div_r_itch(nn, dn) limbs to be passed in
the tp parameter.

[Function]int mpn_sec_invert (mp limb t *rp, mp limb t *ap, const mp limb t
*mp, mp size t n, mp bitcnt t nbcnt, mp limb t *tp)

[Function]mp_size_t mpn_sec_invert_itch (mp size t n)
Set R to A−1 mod M , where R = {rp,n}, A = {ap,n}, and M = {mp,n}. This function’s
interface is preliminary.

If an inverse exists, return 1, otherwise return 0 and leave R undefined. In either case, the
input A is destroyed.

It is required that M is odd, and that nbcnt ≥ dlog(A+ 1)e+ dlog(M + 1)e. A safe choice is
nbcnt = 2n× GMP NUMB BITS, but a smaller value might improve performance if M or A are
known to have leading zero bits.

This function requires scratch space of mpn_sec_invert_itch(n) limbs to be passed in the
tp parameter.

8.2 Nails

Everything in this section is highly experimental and may disappear or be subject to incompat-
ible changes in a future version of GMP.

Nails are an experimental feature whereby a few bits are left unused at the top of each mp_limb_

t. This can significantly improve carry handling on some processors.

All the mpn functions accepting limb data will expect the nail bits to be zero on entry, and will
return data with the nails similarly all zero. This applies both to limb vectors and to single limb
arguments.

Nails can be enabled by configuring with ‘--enable-nails’. By default the number of bits will
be chosen according to what suits the host processor, but a particular number can be selected
with ‘--enable-nails=N’.

At the mpn level, a nail build is neither source nor binary compatible with a non-nail build,
strictly speaking. But programs acting on limbs only through the mpn functions are likely to
work equally well with either build, and judicious use of the definitions below should make any
program compatible with either build, at the source level.

For the higher level routines, meaning mpz etc, a nail build should be fully source and binary
compatible with a non-nail build.

[Macro]GMP_NAIL_BITS
[Macro]GMP_NUMB_BITS
[Macro]GMP_LIMB_BITS

GMP_NAIL_BITS is the number of nail bits, or 0 when nails are not in use. GMP_NUMB_BITS

is the number of data bits in a limb. GMP_LIMB_BITS is the total number of bits in an
mp_limb_t. In all cases

GMP_LIMB_BITS == GMP_NAIL_BITS + GMP_NUMB_BITS

71

[Macro]GMP_NAIL_MASK
[Macro]GMP_NUMB_MASK

Bit masks for the nail and number parts of a limb. GMP_NAIL_MASK is 0 when nails are not
in use.

GMP_NAIL_MASK is not often needed, since the nail part can be obtained with x >> GMP_NUMB_

BITS, and that means one less large constant, which can help various RISC chips.

[Macro]GMP_NUMB_MAX
The maximum value that can be stored in the number part of a limb. This is the same as
GMP_NUMB_MASK, but can be used for clarity when doing comparisons rather than bit-wise
operations.

The term “nails” comes from finger or toe nails, which are at the ends of a limb (arm or leg).
“numb” is short for number, but is also how the developers felt after trying for a long time to
come up with sensible names for these things.

In the future (the distant future most likely) a non-zero nail might be permitted, giving non-
unique representations for numbers in a limb vector. This would help vector processors since
carries would only ever need to propagate one or two limbs.

72 GNU MP 6.2.1

9 Random Number Functions

Sequences of pseudo-random numbers in GMP are generated using a variable of type gmp_

randstate_t, which holds an algorithm selection and a current state. Such a variable must be
initialized by a call to one of the gmp_randinit functions, and can be seeded with one of the
gmp_randseed functions.

The functions actually generating random numbers are described in Section 5.13 [Integer Ran-
dom Numbers], page 42, and Section 7.8 [Miscellaneous Float Functions], page 58.

The older style random number functions don’t accept a gmp_randstate_t parameter but in-
stead share a global variable of that type. They use a default algorithm and are currently
not seeded (though perhaps that will change in the future). The new functions accepting a
gmp_randstate_t are recommended for applications that care about randomness.

9.1 Random State Initialization

[Function]void gmp_randinit_default (gmp randstate t state)
Initialize state with a default algorithm. This will be a compromise between speed and
randomness, and is recommended for applications with no special requirements. Currently
this is gmp_randinit_mt.

[Function]void gmp_randinit_mt (gmp randstate t state)
Initialize state for a Mersenne Twister algorithm. This algorithm is fast and has good ran-
domness properties.

[Function]void gmp_randinit_lc_2exp (gmp randstate t state, const mpz t a,
unsigned long c, mp bitcnt t m2exp)

Initialize state with a linear congruential algorithm X = (aX + c) mod 2m2exp.

The low bits of X in this algorithm are not very random. The least significant bit will have
a period no more than 2, and the second bit no more than 4, etc. For this reason only the
high half of each X is actually used.

When a random number of more than m2exp/2 bits is to be generated, multiple iterations
of the recurrence are used and the results concatenated.

[Function]int gmp_randinit_lc_2exp_size (gmp randstate t state, mp bitcnt t
size)

Initialize state for a linear congruential algorithm as per gmp_randinit_lc_2exp. a, c and
m2exp are selected from a table, chosen so that size bits (or more) of each X will be used,
i.e. m2exp/2 ≥ size.

If successful the return value is non-zero. If size is bigger than the table data provides then
the return value is zero. The maximum size currently supported is 128.

[Function]void gmp_randinit_set (gmp randstate t rop, gmp randstate t op)
Initialize rop with a copy of the algorithm and state from op.

[Function]void gmp_randinit (gmp randstate t state, gmp randalg t alg, . . .)
This function is obsolete.

Initialize state with an algorithm selected by alg. The only choice is GMP_RAND_ALG_LC, which
is gmp_randinit_lc_2exp_size described above. A third parameter of type unsigned long

Chapter 9: Random Number Functions 73

is required, this is the size for that function. GMP_RAND_ALG_DEFAULT or 0 are the same as
GMP_RAND_ALG_LC.

gmp_randinit sets bits in the global variable gmp_errno to indicate an error. GMP_ERROR_

UNSUPPORTED_ARGUMENT if alg is unsupported, or GMP_ERROR_INVALID_ARGUMENT if the size
parameter is too big. It may be noted this error reporting is not thread safe (a good reason
to use gmp_randinit_lc_2exp_size instead).

[Function]void gmp_randclear (gmp randstate t state)
Free all memory occupied by state.

9.2 Random State Seeding

[Function]void gmp_randseed (gmp randstate t state, const mpz t seed)
[Function]void gmp_randseed_ui (gmp randstate t state, unsigned long int seed)

Set an initial seed value into state.

The size of a seed determines how many different sequences of random numbers that it’s
possible to generate. The “quality” of the seed is the randomness of a given seed compared
to the previous seed used, and this affects the randomness of separate number sequences. The
method for choosing a seed is critical if the generated numbers are to be used for important
applications, such as generating cryptographic keys.

Traditionally the system time has been used to seed, but care needs to be taken with this.
If an application seeds often and the resolution of the system clock is low, then the same
sequence of numbers might be repeated. Also, the system time is quite easy to guess, so if
unpredictability is required then it should definitely not be the only source for the seed value.
On some systems there’s a special device /dev/random which provides random data better
suited for use as a seed.

9.3 Random State Miscellaneous

[Function]unsigned long gmp_urandomb_ui (gmp randstate t state, unsigned
long n)

Return a uniformly distributed random number of n bits, i.e. in the range 0 to 2n−1 inclusive.
n must be less than or equal to the number of bits in an unsigned long.

[Function]unsigned long gmp_urandomm_ui (gmp randstate t state, unsigned
long n)

Return a uniformly distributed random number in the range 0 to n− 1, inclusive.

74 GNU MP 6.2.1

10 Formatted Output

10.1 Format Strings

gmp_printf and friends accept format strings similar to the standard C printf (see Section
“Formatted Output” in The GNU C Library Reference Manual). A format specification is of
the form

% [flags] [width] [.[precision]] [type] conv

GMP adds types ‘Z’, ‘Q’ and ‘F’ for mpz_t, mpq_t and mpf_t respectively, ‘M’ for mp_limb_t,
and ‘N’ for an mp_limb_t array. ‘Z’, ‘Q’, ‘M’ and ‘N’ behave like integers. ‘Q’ will print a ‘/’ and
a denominator, if needed. ‘F’ behaves like a float. For example,

mpz_t z;

gmp_printf ("%s is an mpz %Zd\n", "here", z);

mpq_t q;

gmp_printf ("a hex rational: %#40Qx\n", q);

mpf_t f;

int n;

gmp_printf ("fixed point mpf %.*Ff with %d digits\n", n, f, n);

mp_limb_t l;

gmp_printf ("limb %Mu\n", l);

const mp_limb_t *ptr;

mp_size_t size;

gmp_printf ("limb array %Nx\n", ptr, size);

For ‘N’ the limbs are expected least significant first, as per the mpn functions (see Chapter 8
[Low-level Functions], page 60). A negative size can be given to print the value as a negative.

All the standard C printf types behave the same as the C library printf, and can be freely
intermixed with the GMP extensions. In the current implementation the standard parts of the
format string are simply handed to printf and only the GMP extensions handled directly.

The flags accepted are as follows. GLIBC style ‘’’ is only for the standard C types (not the
GMP types), and only if the C library supports it.

0 pad with zeros (rather than spaces)

show the base with ‘0x’, ‘0X’ or ‘0’

+ always show a sign

(space) show a space or a ‘-’ sign

’ group digits, GLIBC style (not GMP types)

The optional width and precision can be given as a number within the format string, or as a ‘*’
to take an extra parameter of type int, the same as the standard printf.

The standard types accepted are as follows. ‘h’ and ‘l’ are portable, the rest will depend on the
compiler (or include files) for the type and the C library for the output.

h short

hh char

Chapter 10: Formatted Output 75

j intmax_t or uintmax_t

l long or wchar_t

ll long long

L long double

q quad_t or u_quad_t

t ptrdiff_t

z size_t

The GMP types are

F mpf_t, float conversions

Q mpq_t, integer conversions

M mp_limb_t, integer conversions

N mp_limb_t array, integer conversions

Z mpz_t, integer conversions

The conversions accepted are as follows. ‘a’ and ‘A’ are always supported for mpf_t but depend
on the C library for standard C float types. ‘m’ and ‘p’ depend on the C library.

a A hex floats, C99 style

c character

d decimal integer

e E scientific format float

f fixed point float

i same as d

g G fixed or scientific float

m strerror string, GLIBC style

n store characters written so far

o octal integer

p pointer

s string

u unsigned integer

x X hex integer

‘o’, ‘x’ and ‘X’ are unsigned for the standard C types, but for types ‘Z’, ‘Q’ and ‘N’ they are
signed. ‘u’ is not meaningful for ‘Z’, ‘Q’ and ‘N’.

‘M’ is a proxy for the C library ‘l’ or ‘L’, according to the size of mp_limb_t. Unsigned conver-
sions will be usual, but a signed conversion can be used and will interpret the value as a twos
complement negative.

‘n’ can be used with any type, even the GMP types.

Other types or conversions that might be accepted by the C library printf cannot be used
through gmp_printf, this includes for instance extensions registered with GLIBC register_

printf_function. Also currently there’s no support for POSIX ‘$’ style numbered arguments
(perhaps this will be added in the future).

The precision field has its usual meaning for integer ‘Z’ and float ‘F’ types, but is currently
undefined for ‘Q’ and should not be used with that.

mpf_t conversions only ever generate as many digits as can be accurately represented by the
operand, the same as mpf_get_str does. Zeros will be used if necessary to pad to the requested
precision. This happens even for an ‘f’ conversion of an mpf_t which is an integer, for instance

76 GNU MP 6.2.1

21024 in an mpf_t of 128 bits precision will only produce about 40 digits, then pad with zeros
to the decimal point. An empty precision field like ‘%.Fe’ or ‘%.Ff’ can be used to specifically
request just the significant digits. Without any dot and thus no precision field, a precision value
of 6 will be used. Note that these rules mean that ‘%Ff’, ‘%.Ff’, and ‘%.0Ff’ will all be different.

The decimal point character (or string) is taken from the current locale settings on systems which
provide localeconv (see Section “Locales and Internationalization” in The GNU C Library
Reference Manual). The C library will normally do the same for standard float output.

The format string is only interpreted as plain chars, multibyte characters are not recognised.
Perhaps this will change in the future.

10.2 Functions

Each of the following functions is similar to the corresponding C library function. The basic
printf forms take a variable argument list. The vprintf forms take an argument pointer, see
Section “Variadic Functions” in The GNU C Library Reference Manual, or ‘man 3 va_start’.

It should be emphasised that if a format string is invalid, or the arguments don’t match what
the format specifies, then the behaviour of any of these functions will be unpredictable. GCC
format string checking is not available, since it doesn’t recognise the GMP extensions.

The file based functions gmp_printf and gmp_fprintf will return −1 to indicate a write error.
Output is not “atomic”, so partial output may be produced if a write error occurs. All the
functions can return −1 if the C library printf variant in use returns −1, but this shouldn’t
normally occur.

[Function]int gmp_printf (const char *fmt, . . .)
[Function]int gmp_vprintf (const char *fmt, va list ap)

Print to the standard output stdout. Return the number of characters written, or −1 if an
error occurred.

[Function]int gmp_fprintf (FILE *fp, const char *fmt, . . .)
[Function]int gmp_vfprintf (FILE *fp, const char *fmt, va list ap)

Print to the stream fp. Return the number of characters written, or −1 if an error occurred.

[Function]int gmp_sprintf (char *buf, const char *fmt, . . .)
[Function]int gmp_vsprintf (char *buf, const char *fmt, va list ap)

Form a null-terminated string in buf. Return the number of characters written, excluding
the terminating null.

No overlap is permitted between the space at buf and the string fmt.

These functions are not recommended, since there’s no protection against exceeding the space
available at buf.

[Function]int gmp_snprintf (char *buf, size t size, const char *fmt, . . .)
[Function]int gmp_vsnprintf (char *buf, size t size, const char *fmt, va list ap)

Form a null-terminated string in buf. No more than size bytes will be written. To get the
full output, size must be enough for the string and null-terminator.

The return value is the total number of characters which ought to have been produced,
excluding the terminating null. If retval ≥ size then the actual output has been truncated to
the first size − 1 characters, and a null appended.

No overlap is permitted between the region {buf,size} and the fmt string.

Chapter 10: Formatted Output 77

Notice the return value is in ISO C99 snprintf style. This is so even if the C library
vsnprintf is the older GLIBC 2.0.x style.

[Function]int gmp_asprintf (char **pp, const char *fmt, . . .)
[Function]int gmp_vasprintf (char **pp, const char *fmt, va list ap)

Form a null-terminated string in a block of memory obtained from the current memory
allocation function (see Chapter 13 [Custom Allocation], page 92). The block will be the size
of the string and null-terminator. The address of the block in stored to *pp. The return
value is the number of characters produced, excluding the null-terminator.

Unlike the C library asprintf, gmp_asprintf doesn’t return −1 if there’s no more memory
available, it lets the current allocation function handle that.

[Function]int gmp_obstack_printf (struct obstack *ob, const char *fmt, . . .)
[Function]int gmp_obstack_vprintf (struct obstack *ob, const char *fmt, va list

ap)
Append to the current object in ob. The return value is the number of characters written.
A null-terminator is not written.

fmt cannot be within the current object in ob, since that object might move as it grows.

These functions are available only when the C library provides the obstack feature, which
probably means only on GNU systems, see Section “Obstacks” in The GNU C Library Ref-
erence Manual.

10.3 C++ Formatted Output

The following functions are provided in libgmpxx (see Section 3.1 [Headers and Libraries],
page 17), which is built if C++ support is enabled (see Section 2.1 [Build Options], page 3).
Prototypes are available from <gmp.h>.

[Function]ostream& operator<< (ostream& stream, const mpz t op)
Print op to stream, using its ios formatting settings. ios::width is reset to 0 after output,
the same as the standard ostream operator<< routines do.

In hex or octal, op is printed as a signed number, the same as for decimal. This is unlike the
standard operator<< routines on int etc, which instead give twos complement.

[Function]ostream& operator<< (ostream& stream, const mpq t op)
Print op to stream, using its ios formatting settings. ios::width is reset to 0 after output,
the same as the standard ostream operator<< routines do.

Output will be a fraction like ‘5/9’, or if the denominator is 1 then just a plain integer like
‘123’.

In hex or octal, op is printed as a signed value, the same as for decimal. If ios::showbase is
set then a base indicator is shown on both the numerator and denominator (if the denominator
is required).

[Function]ostream& operator<< (ostream& stream, const mpf t op)
Print op to stream, using its ios formatting settings. ios::width is reset to 0 after output,
the same as the standard ostream operator<< routines do.

The decimal point follows the standard library float operator<<, which on recent systems
means the std::locale imbued on stream.

78 GNU MP 6.2.1

Hex and octal are supported, unlike the standard operator<< on double. The mantissa will
be in hex or octal, the exponent will be in decimal. For hex the exponent delimiter is an ‘@’.
This is as per mpf_out_str.

ios::showbase is supported, and will put a base on the mantissa, for example hex ‘0x1.8’ or
‘0x0.8’, or octal ‘01.4’ or ‘00.4’. This last form is slightly strange, but at least differentiates
itself from decimal.

These operators mean that GMP types can be printed in the usual C++ way, for example,

mpz_t z;

int n;

...

cout << "iteration " << n << " value " << z << "\n";

But note that ostream output (and istream input, see Section 11.3 [C++ Formatted Input],
page 81) is the only overloading available for the GMP types and that for instance using + with
an mpz_t will have unpredictable results. For classes with overloading, see Chapter 12 [C++
Class Interface], page 83.

79

11 Formatted Input

11.1 Formatted Input Strings

gmp_scanf and friends accept format strings similar to the standard C scanf (see Section
“Formatted Input” in The GNU C Library Reference Manual). A format specification is of the
form

% [flags] [width] [type] conv

GMP adds types ‘Z’, ‘Q’ and ‘F’ for mpz_t, mpq_t and mpf_t respectively. ‘Z’ and ‘Q’ behave like
integers. ‘Q’ will read a ‘/’ and a denominator, if present. ‘F’ behaves like a float.

GMP variables don’t require an & when passed to gmp_scanf, since they’re already “call-by-
reference”. For example,

/* to read say "a(5) = 1234" */

int n;

mpz_t z;

gmp_scanf ("a(%d) = %Zd\n", &n, z);

mpq_t q1, q2;

gmp_sscanf ("0377 + 0x10/0x11", "%Qi + %Qi", q1, q2);

/* to read say "topleft (1.55,-2.66)" */

mpf_t x, y;

char buf[32];

gmp_scanf ("%31s (%Ff,%Ff)", buf, x, y);

All the standard C scanf types behave the same as in the C library scanf, and can be freely
intermixed with the GMP extensions. In the current implementation the standard parts of the
format string are simply handed to scanf and only the GMP extensions handled directly.

The flags accepted are as follows. ‘a’ and ‘’’ will depend on support from the C library, and ‘’’
cannot be used with GMP types.

* read but don’t store

a allocate a buffer (string conversions)

’ grouped digits, GLIBC style (not GMP types)

The standard types accepted are as follows. ‘h’ and ‘l’ are portable, the rest will depend on the
compiler (or include files) for the type and the C library for the input.

h short

hh char

j intmax_t or uintmax_t

l long int, double or wchar_t

ll long long

L long double

q quad_t or u_quad_t

t ptrdiff_t

z size_t

The GMP types are

80 GNU MP 6.2.1

F mpf_t, float conversions

Q mpq_t, integer conversions

Z mpz_t, integer conversions

The conversions accepted are as follows. ‘p’ and ‘[’ will depend on support from the C library,
the rest are standard.

c character or characters

d decimal integer

e E f g

G

float

i integer with base indicator

n characters read so far

o octal integer

p pointer

s string of non-whitespace characters

u decimal integer

x X hex integer

[string of characters in a set

‘e’, ‘E’, ‘f’, ‘g’ and ‘G’ are identical, they all read either fixed point or scientific format, and
either upper or lower case ‘e’ for the exponent in scientific format.

C99 style hex float format (printf %a, see Section 10.1 [Formatted Output Strings], page 74) is
always accepted for mpf_t, but for the standard float types it will depend on the C library.

‘x’ and ‘X’ are identical, both accept both upper and lower case hexadecimal.

‘o’, ‘u’, ‘x’ and ‘X’ all read positive or negative values. For the standard C types these are
described as “unsigned” conversions, but that merely affects certain overflow handling, negatives
are still allowed (per strtoul, see Section “Parsing of Integers” in The GNU C Library Reference
Manual). For GMP types there are no overflows, so ‘d’ and ‘u’ are identical.

‘Q’ type reads the numerator and (optional) denominator as given. If the value might not be in
canonical form then mpq_canonicalize must be called before using it in any calculations (see
Chapter 6 [Rational Number Functions], page 47).

‘Qi’ will read a base specification separately for the numerator and denominator. For example
‘0x10/11’ would be 16/11, whereas ‘0x10/0x11’ would be 16/17.

‘n’ can be used with any of the types above, even the GMP types. ‘*’ to suppress assignment is
allowed, though in that case it would do nothing at all.

Other conversions or types that might be accepted by the C library scanf cannot be used
through gmp_scanf.

Whitespace is read and discarded before a field, except for ‘c’ and ‘[’ conversions.

For float conversions, the decimal point character (or string) expected is taken from the current
locale settings on systems which provide localeconv (see Section “Locales and International-
ization” in The GNU C Library Reference Manual). The C library will normally do the same
for standard float input.

The format string is only interpreted as plain chars, multibyte characters are not recognised.
Perhaps this will change in the future.

Chapter 11: Formatted Input 81

11.2 Formatted Input Functions

Each of the following functions is similar to the corresponding C library function. The plain
scanf forms take a variable argument list. The vscanf forms take an argument pointer, see
Section “Variadic Functions” in The GNU C Library Reference Manual, or ‘man 3 va_start’.

It should be emphasised that if a format string is invalid, or the arguments don’t match what
the format specifies, then the behaviour of any of these functions will be unpredictable. GCC
format string checking is not available, since it doesn’t recognise the GMP extensions.

No overlap is permitted between the fmt string and any of the results produced.

[Function]int gmp_scanf (const char *fmt, . . .)
[Function]int gmp_vscanf (const char *fmt, va list ap)

Read from the standard input stdin.

[Function]int gmp_fscanf (FILE *fp, const char *fmt, . . .)
[Function]int gmp_vfscanf (FILE *fp, const char *fmt, va list ap)

Read from the stream fp.

[Function]int gmp_sscanf (const char *s, const char *fmt, . . .)
[Function]int gmp_vsscanf (const char *s, const char *fmt, va list ap)

Read from a null-terminated string s.

The return value from each of these functions is the same as the standard C99 scanf, namely
the number of fields successfully parsed and stored. ‘%n’ fields and fields read but suppressed by
‘*’ don’t count towards the return value.

If end of input (or a file error) is reached before a character for a field or a literal, and if
no previous non-suppressed fields have matched, then the return value is EOF instead of 0. A
whitespace character in the format string is only an optional match and doesn’t induce an EOF

in this fashion. Leading whitespace read and discarded for a field don’t count as characters for
that field.

For the GMP types, input parsing follows C99 rules, namely one character of lookahead is used
and characters are read while they continue to meet the format requirements. If this doesn’t
provide a complete number then the function terminates, with that field not stored nor counted
towards the return value. For instance with mpf_t an input ‘1.23e-XYZ’ would be read up to
the ‘X’ and that character pushed back since it’s not a digit. The string ‘1.23e-’ would then be
considered invalid since an ‘e’ must be followed by at least one digit.

For the standard C types, in the current implementation GMP calls the C library scanf func-
tions, which might have looser rules about what constitutes a valid input.

Note that gmp_sscanf is the same as gmp_fscanf and only does one character of lookahead
when parsing. Although clearly it could look at its entire input, it is deliberately made identical
to gmp_fscanf, the same way C99 sscanf is the same as fscanf.

11.3 C++ Formatted Input

The following functions are provided in libgmpxx (see Section 3.1 [Headers and Libraries],
page 17), which is built only if C++ support is enabled (see Section 2.1 [Build Options], page 3).
Prototypes are available from <gmp.h>.

[Function]istream& operator>> (istream& stream, mpz t rop)
Read rop from stream, using its ios formatting settings.

82 GNU MP 6.2.1

[Function]istream& operator>> (istream& stream, mpq t rop)
An integer like ‘123’ will be read, or a fraction like ‘5/9’. No whitespace is allowed around
the ‘/’. If the fraction is not in canonical form then mpq_canonicalize must be called (see
Chapter 6 [Rational Number Functions], page 47) before operating on it.

As per integer input, an ‘0’ or ‘0x’ base indicator is read when none of ios::dec, ios::oct
or ios::hex are set. This is done separately for numerator and denominator, so that for
instance ‘0x10/11’ is 16/11 and ‘0x10/0x11’ is 16/17.

[Function]istream& operator>> (istream& stream, mpf t rop)
Read rop from stream, using its ios formatting settings.

Hex or octal floats are not supported, but might be in the future, or perhaps it’s best to
accept only what the standard float operator>> does.

Note that digit grouping specified by the istream locale is currently not accepted. Perhaps this
will change in the future.

These operators mean that GMP types can be read in the usual C++ way, for example,

mpz_t z;

...

cin >> z;

But note that istream input (and ostream output, see Section 10.3 [C++ Formatted Output],
page 77) is the only overloading available for the GMP types and that for instance using + with
an mpz_t will have unpredictable results. For classes with overloading, see Chapter 12 [C++
Class Interface], page 83.

83

12 C++ Class Interface

This chapter describes the C++ class based interface to GMP.

All GMP C language types and functions can be used in C++ programs, since gmp.h has extern
"C" qualifiers, but the class interface offers overloaded functions and operators which may be
more convenient.

Due to the implementation of this interface, a reasonably recent C++ compiler is required, one
supporting namespaces, partial specialization of templates and member templates.

Everything described in this chapter is to be considered preliminary and might be subject to
incompatible changes if some unforeseen difficulty reveals itself.

12.1 C++ Interface General

All the C++ classes and functions are available with

#include <gmpxx.h>

Programs should be linked with the libgmpxx and libgmp libraries. For example,

g++ mycxxprog.cc -lgmpxx -lgmp

The classes defined are

[Class]mpz_class
[Class]mpq_class
[Class]mpf_class

The standard operators and various standard functions are overloaded to allow arithmetic with
these classes. For example,

int

main (void)

{

mpz_class a, b, c;

a = 1234;

b = "-5678";

c = a+b;

cout << "sum is " << c << "\n";

cout << "absolute value is " << abs(c) << "\n";

return 0;

}

An important feature of the implementation is that an expression like a=b+c results in a single
call to the corresponding mpz_add, without using a temporary for the b+c part. Expressions
which by their nature imply intermediate values, like a=b*c+d*e, still use temporaries though.

The classes can be freely intermixed in expressions, as can the classes and the standard types
long, unsigned long and double. Smaller types like int or float can also be intermixed, since
C++ will promote them.

Note that bool is not accepted directly, but must be explicitly cast to an int first. This is
because C++ will automatically convert any pointer to a bool, so if GMP accepted bool it

84 GNU MP 6.2.1

would make all sorts of invalid class and pointer combinations compile but almost certainly not
do anything sensible.

Conversions back from the classes to standard C++ types aren’t done automatically, instead
member functions like get_si are provided (see the following sections for details).

Also there are no automatic conversions from the classes to the corresponding GMP C types,
instead a reference to the underlying C object can be obtained with the following functions,

[Function]mpz_t mpz_class::get_mpz_t ()
[Function]mpq_t mpq_class::get_mpq_t ()
[Function]mpf_t mpf_class::get_mpf_t ()

These can be used to call a C function which doesn’t have a C++ class interface. For example
to set a to the GCD of b and c,

mpz_class a, b, c;

...

mpz_gcd (a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t());

In the other direction, a class can be initialized from the corresponding GMP C type, or assigned
to if an explicit constructor is used. In both cases this makes a copy of the value, it doesn’t
create any sort of association. For example,

mpz_t z;

// ... init and calculate z ...

mpz_class x(z);

mpz_class y;

y = mpz_class (z);

There are no namespace setups in gmpxx.h, all types and functions are simply put into the global
namespace. This is what gmp.h has done in the past, and continues to do for compatibility. The
extras provided by gmpxx.h follow GMP naming conventions and are unlikely to clash with
anything.

12.2 C++ Interface Integers

[Function]mpz_class::mpz_class (type n)
Construct an mpz_class. All the standard C++ types may be used, except long long and
long double, and all the GMP C++ classes can be used, although conversions from mpq_

class and mpf_class are explicit. Any necessary conversion follows the corresponding
C function, for example double follows mpz_set_d (see Section 5.2 [Assigning Integers],
page 31).

[Function]explicit mpz_class::mpz_class (const mpz t z)
Construct an mpz_class from an mpz_t. The value in z is copied into the new mpz_class,
there won’t be any permanent association between it and z.

[Function]explicit mpz_class::mpz_class (const char *s, int base = 0)
[Function]explicit mpz_class::mpz_class (const string& s, int base = 0)

Construct an mpz_class converted from a string using mpz_set_str (see Section 5.2 [As-
signing Integers], page 31).

If the string is not a valid integer, an std::invalid_argument exception is thrown. The
same applies to operator=.

Chapter 12: C++ Class Interface 85

[Function]mpz_class operator"" mpz (const char *str)
With C++11 compilers, integers can be constructed with the syntax 123_mpz which is equiv-
alent to mpz_class("123").

[Function]mpz_class operator/ (mpz class a, mpz class d)
[Function]mpz_class operator% (mpz class a, mpz class d)

Divisions involving mpz_class round towards zero, as per the mpz_tdiv_q and mpz_tdiv_r

functions (see Section 5.6 [Integer Division], page 34). This is the same as the C99 / and %

operators.

The mpz_fdiv... or mpz_cdiv... functions can always be called directly if desired. For
example,

mpz_class q, a, d;

...

mpz_fdiv_q (q.get_mpz_t(), a.get_mpz_t(), d.get_mpz_t());

[Function]mpz_class abs (mpz class op)
[Function]int cmp (mpz class op1, type op2)
[Function]int cmp (type op1, mpz class op2)
[Function]bool mpz_class::fits_sint_p (void)
[Function]bool mpz_class::fits_slong_p (void)
[Function]bool mpz_class::fits_sshort_p (void)
[Function]bool mpz_class::fits_uint_p (void)
[Function]bool mpz_class::fits_ulong_p (void)
[Function]bool mpz_class::fits_ushort_p (void)
[Function]double mpz_class::get_d (void)
[Function]long mpz_class::get_si (void)
[Function]string mpz_class::get_str (int base = 10)
[Function]unsigned long mpz_class::get_ui (void)
[Function]int mpz_class::set_str (const char *str, int base)
[Function]int mpz_class::set_str (const string& str, int base)
[Function]int sgn (mpz class op)
[Function]mpz_class sqrt (mpz class op)
[Function]mpz_class gcd (mpz class op1, mpz class op2)
[Function]mpz_class lcm (mpz class op1, mpz class op2)
[Function]mpz_class mpz_class::factorial (type op)
[Function]mpz_class factorial (mpz class op)
[Function]mpz_class mpz_class::primorial (type op)
[Function]mpz_class primorial (mpz class op)
[Function]mpz_class mpz_class::fibonacci (type op)
[Function]mpz_class fibonacci (mpz class op)
[Function]void mpz_class::swap (mpz class& op)
[Function]void swap (mpz class& op1, mpz class& op2)

These functions provide a C++ class interface to the corresponding GMP C routines. Calling
factorial or primorial on a negative number is undefined.

cmp can be used with any of the classes or the standard C++ types, except long long and
long double.

Overloaded operators for combinations of mpz_class and double are provided for completeness,
but it should be noted that if the given double is not an integer then the way any rounding is

86 GNU MP 6.2.1

done is currently unspecified. The rounding might take place at the start, in the middle, or at
the end of the operation, and it might change in the future.

Conversions between mpz_class and double, however, are defined to follow the corresponding
C functions mpz_get_d and mpz_set_d. And comparisons are always made exactly, as per
mpz_cmp_d.

12.3 C++ Interface Rationals

In all the following constructors, if a fraction is given then it should be in canonical form, or if
not then mpq_class::canonicalize called.

[Function]mpq_class::mpq_class (type op)
[Function]mpq_class::mpq_class (integer num, integer den)

Construct an mpq_class. The initial value can be a single value of any type (conversion from
mpf_class is explicit), or a pair of integers (mpz_class or standard C++ integer types)
representing a fraction, except that long long and long double are not supported. For
example,

mpq_class q (99);

mpq_class q (1.75);

mpq_class q (1, 3);

[Function]explicit mpq_class::mpq_class (const mpq t q)
Construct an mpq_class from an mpq_t. The value in q is copied into the new mpq_class,
there won’t be any permanent association between it and q.

[Function]explicit mpq_class::mpq_class (const char *s, int base = 0)
[Function]explicit mpq_class::mpq_class (const string& s, int base = 0)

Construct an mpq_class converted from a string using mpq_set_str (see Section 6.1 [Initial-
izing Rationals], page 47).

If the string is not a valid rational, an std::invalid_argument exception is thrown. The
same applies to operator=.

[Function]mpq_class operator"" mpq (const char *str)
With C++11 compilers, integral rationals can be constructed with the syntax 123_mpq which
is equivalent to mpq_class(123_mpz). Other rationals can be built as -1_mpq/2 or 0xb_

mpq/123456_mpz.

[Function]void mpq_class::canonicalize ()
Put an mpq_class into canonical form, as per Chapter 6 [Rational Number Functions],
page 47. All arithmetic operators require their operands in canonical form, and will return
results in canonical form.

[Function]mpq_class abs (mpq class op)
[Function]int cmp (mpq class op1, type op2)
[Function]int cmp (type op1, mpq class op2)
[Function]double mpq_class::get_d (void)
[Function]string mpq_class::get_str (int base = 10)
[Function]int mpq_class::set_str (const char *str, int base)
[Function]int mpq_class::set_str (const string& str, int base)
[Function]int sgn (mpq class op)
[Function]void mpq_class::swap (mpq class& op)

Chapter 12: C++ Class Interface 87

[Function]void swap (mpq class& op1, mpq class& op2)
These functions provide a C++ class interface to the corresponding GMP C routines.

cmp can be used with any of the classes or the standard C++ types, except long long and
long double.

[Function]mpz_class& mpq_class::get_num ()
[Function]mpz_class& mpq_class::get_den ()

Get a reference to an mpz_class which is the numerator or denominator of an mpq_class.
This can be used both for read and write access. If the object returned is modified, it modifies
the original mpq_class.

If direct manipulation might produce a non-canonical value, then mpq_class::canonicalize

must be called before further operations.

[Function]mpz_t mpq_class::get_num_mpz_t ()
[Function]mpz_t mpq_class::get_den_mpz_t ()

Get a reference to the underlying mpz_t numerator or denominator of an mpq_class. This
can be passed to C functions expecting an mpz_t. Any modifications made to the mpz_t will
modify the original mpq_class.

If direct manipulation might produce a non-canonical value, then mpq_class::canonicalize

must be called before further operations.

[Function]istream& operator>> (istream& stream, mpq class& rop);
Read rop from stream, using its ios formatting settings, the same as mpq_t operator>> (see
Section 11.3 [C++ Formatted Input], page 81).

If the rop read might not be in canonical form then mpq_class::canonicalize must be
called.

12.4 C++ Interface Floats

When an expression requires the use of temporary intermediate mpf_class values, like
f=g*h+x*y, those temporaries will have the same precision as the destination f. Explicit con-
structors can be used if this doesn’t suit.

[Function]mpf_class::mpf_class (type op)
[Function]mpf_class::mpf_class (type op, mp bitcnt t prec)

Construct an mpf_class. Any standard C++ type can be used, except long long and long

double, and any of the GMP C++ classes can be used.

If prec is given, the initial precision is that value, in bits. If prec is not given, then the
initial precision is determined by the type of op given. An mpz_class, mpq_class, or C++
builtin type will give the default mpf precision (see Section 7.1 [Initializing Floats], page 52).
An mpf_class or expression will give the precision of that value. The precision of a binary
expression is the higher of the two operands.

mpf_class f(1.5); // default precision

mpf_class f(1.5, 500); // 500 bits (at least)

mpf_class f(x); // precision of x

mpf_class f(abs(x)); // precision of x

mpf_class f(-g, 1000); // 1000 bits (at least)

mpf_class f(x+y); // greater of precisions of x and y

88 GNU MP 6.2.1

[Function]explicit mpf_class::mpf_class (const mpf t f)
[Function]mpf_class::mpf_class (const mpf t f, mp bitcnt t prec)

Construct an mpf_class from an mpf_t. The value in f is copied into the new mpf_class,
there won’t be any permanent association between it and f.

If prec is given, the initial precision is that value, in bits. If prec is not given, then the initial
precision is that of f.

[Function]explicit mpf_class::mpf_class (const char *s)
[Function]mpf_class::mpf_class (const char *s, mp bitcnt t prec, int base = 0)
[Function]explicit mpf_class::mpf_class (const string& s)
[Function]mpf_class::mpf_class (const string& s, mp bitcnt t prec, int base =

0)
Construct an mpf_class converted from a string using mpf_set_str (see Section 7.2 [As-
signing Floats], page 54). If prec is given, the initial precision is that value, in bits. If not,
the default mpf precision (see Section 7.1 [Initializing Floats], page 52) is used.

If the string is not a valid float, an std::invalid_argument exception is thrown. The same
applies to operator=.

[Function]mpf_class operator"" mpf (const char *str)
With C++11 compilers, floats can be constructed with the syntax 1.23e-1_mpf which is
equivalent to mpf_class("1.23e-1").

[Function]mpf_class& mpf_class::operator= (type op)
Convert and store the given op value to an mpf_class object. The same types are accepted
as for the constructors above.

Note that operator= only stores a new value, it doesn’t copy or change the precision of the
destination, instead the value is truncated if necessary. This is the same as mpf_set etc.
Note in particular this means for mpf_class a copy constructor is not the same as a default
constructor plus assignment.

mpf_class x (y); // x created with precision of y

mpf_class x; // x created with default precision

x = y; // value truncated to that precision

Applications using templated code may need to be careful about the assumptions the code
makes in this area, when working with mpf_class values of various different or non-default
precisions. For instance implementations of the standard complex template have been seen
in both styles above, though of course complex is normally only actually specified for use
with the builtin float types.

[Function]mpf_class abs (mpf class op)
[Function]mpf_class ceil (mpf class op)
[Function]int cmp (mpf class op1, type op2)
[Function]int cmp (type op1, mpf class op2)
[Function]bool mpf_class::fits_sint_p (void)
[Function]bool mpf_class::fits_slong_p (void)
[Function]bool mpf_class::fits_sshort_p (void)
[Function]bool mpf_class::fits_uint_p (void)
[Function]bool mpf_class::fits_ulong_p (void)
[Function]bool mpf_class::fits_ushort_p (void)
[Function]mpf_class floor (mpf class op)

Chapter 12: C++ Class Interface 89

[Function]mpf_class hypot (mpf class op1, mpf class op2)
[Function]double mpf_class::get_d (void)
[Function]long mpf_class::get_si (void)
[Function]string mpf_class::get_str (mp exp t& exp, int base = 10, size t

digits = 0)
[Function]unsigned long mpf_class::get_ui (void)
[Function]int mpf_class::set_str (const char *str, int base)
[Function]int mpf_class::set_str (const string& str, int base)
[Function]int sgn (mpf class op)
[Function]mpf_class sqrt (mpf class op)
[Function]void mpf_class::swap (mpf class& op)
[Function]void swap (mpf class& op1, mpf class& op2)
[Function]mpf_class trunc (mpf class op)

These functions provide a C++ class interface to the corresponding GMP C routines.

cmp can be used with any of the classes or the standard C++ types, except long long and
long double.

The accuracy provided by hypot is not currently guaranteed.

[Function]mp_bitcnt_t mpf_class::get_prec ()
[Function]void mpf_class::set_prec (mp bitcnt t prec)
[Function]void mpf_class::set_prec_raw (mp bitcnt t prec)

Get or set the current precision of an mpf_class.

The restrictions described for mpf_set_prec_raw (see Section 7.1 [Initializing Floats],
page 52) apply to mpf_class::set_prec_raw. Note in particular that the mpf_class must
be restored to it’s allocated precision before being destroyed. This must be done by applica-
tion code, there’s no automatic mechanism for it.

12.5 C++ Interface Random Numbers

[Class]gmp_randclass
The C++ class interface to the GMP random number functions uses gmp_randclass to hold
an algorithm selection and current state, as per gmp_randstate_t.

[Function]gmp_randclass::gmp_randclass (void (*randinit) (gmp randstate t,
. . .), . . .)

Construct a gmp_randclass, using a call to the given randinit function (see Section 9.1
[Random State Initialization], page 72). The arguments expected are the same as randinit,
but with mpz_class instead of mpz_t. For example,

gmp_randclass r1 (gmp_randinit_default);

gmp_randclass r2 (gmp_randinit_lc_2exp_size, 32);

gmp_randclass r3 (gmp_randinit_lc_2exp, a, c, m2exp);

gmp_randclass r4 (gmp_randinit_mt);

gmp_randinit_lc_2exp_size will fail if the size requested is too big, an std::length_error

exception is thrown in that case.

[Function]gmp_randclass::gmp_randclass (gmp randalg t alg, . . .)
Construct a gmp_randclass using the same parameters as gmp_randinit (see Section 9.1
[Random State Initialization], page 72). This function is obsolete and the above randinit
style should be preferred.

90 GNU MP 6.2.1

[Function]void gmp_randclass::seed (unsigned long int s)
[Function]void gmp_randclass::seed (mpz class s)

Seed a random number generator. See see Chapter 9 [Random Number Functions], page 72,
for how to choose a good seed.

[Function]mpz_class gmp_randclass::get_z_bits (mp bitcnt t bits)
[Function]mpz_class gmp_randclass::get_z_bits (mpz class bits)

Generate a random integer with a specified number of bits.

[Function]mpz_class gmp_randclass::get_z_range (mpz class n)
Generate a random integer in the range 0 to n− 1 inclusive.

[Function]mpf_class gmp_randclass::get_f ()
[Function]mpf_class gmp_randclass::get_f (mp bitcnt t prec)

Generate a random float f in the range 0 <= f < 1. f will be to prec bits precision, or if
prec is not given then to the precision of the destination. For example,

gmp_randclass r;

...

mpf_class f (0, 512); // 512 bits precision

f = r.get_f(); // random number, 512 bits

12.6 C++ Interface Limitations

mpq_class and Templated Reading
A generic piece of template code probably won’t know that mpq_class requires a
canonicalize call if inputs read with operator>> might be non-canonical. This
can lead to incorrect results.

operator>> behaves as it does for reasons of efficiency. A canonicalize can be quite
time consuming on large operands, and is best avoided if it’s not necessary.

But this potential difficulty reduces the usefulness of mpq_class. Perhaps a mech-
anism to tell operator>> what to do will be adopted in the future, maybe a pre-
processor define, a global flag, or an ios flag pressed into service. Or maybe, at
the risk of inconsistency, the mpq_class operator>> could canonicalize and leave
mpq_t operator>> not doing so, for use on those occasions when that’s acceptable.
Send feedback or alternate ideas to gmp-bugs@gmplib.org.

Subclassing
Subclassing the GMP C++ classes works, but is not currently recommended.

Expressions involving subclasses resolve correctly (or seem to), but in normal C++
fashion the subclass doesn’t inherit constructors and assignments. There’s many of
those in the GMP classes, and a good way to reestablish them in a subclass is not
yet provided.

Templated Expressions
A subtle difficulty exists when using expressions together with application-defined
template functions. Consider the following, with T intended to be some numeric
type,

template <class T>

T fun (const T &, const T &);

When used with, say, plain mpz_class variables, it works fine: T is resolved as
mpz_class.

mpz_class f(1), g(2);

mailto:gmp-bugs@gmplib.org

91

fun (f, g); // Good

But when one of the arguments is an expression, it doesn’t work.

mpz_class f(1), g(2), h(3);

fun (f, g+h); // Bad

This is because g+h ends up being a certain expression template type internal to
gmpxx.h, which the C++ template resolution rules are unable to automatically con-
vert to mpz_class. The workaround is simply to add an explicit cast.

mpz_class f(1), g(2), h(3);

fun (f, mpz_class(g+h)); // Good

Similarly, within fun it may be necessary to cast an expression to type T when
calling a templated fun2.

template <class T>

void fun (T f, T g)

{

fun2 (f, f+g); // Bad

}

template <class T>

void fun (T f, T g)

{

fun2 (f, T(f+g)); // Good

}

C++11 C++11 provides several new ways in which types can be inferred: auto, decltype,
etc. While they can be very convenient, they don’t mix well with expression tem-
plates. In this example, the addition is performed twice, as if we had defined sum

as a macro.

mpz_class z = 33;

auto sum = z + z;

mpz_class prod = sum * sum;

This other example may crash, though some compilers might make it look like it is
working, because the expression z+z goes out of scope before it is evaluated.

mpz_class z = 33;

auto sum = z + z + z;

mpz_class prod = sum * 2;

It is thus strongly recommended to avoid auto anywhere a GMP C++ expression
may appear.

92 GNU MP 6.2.1

13 Custom Allocation

By default GMP uses malloc, realloc and free for memory allocation, and if they fail GMP
prints a message to the standard error output and terminates the program.

Alternate functions can be specified, to allocate memory in a different way or to have a different
error action on running out of memory.

[Function]void mp_set_memory_functions (
void *(*alloc_func_ptr) (size t),
void *(*realloc_func_ptr) (void *, size t, size t),
void (*free_func_ptr) (void *, size t))

Replace the current allocation functions from the arguments. If an argument is NULL, the
corresponding default function is used.

These functions will be used for all memory allocation done by GMP, apart from temporary
space from alloca if that function is available and GMP is configured to use it (see Section 2.1
[Build Options], page 3).

Be sure to call mp_set_memory_functions only when there are no active GMP objects
allocated using the previous memory functions! Usually that means calling it before any
other GMP function.

The functions supplied should fit the following declarations:

[Function]void * allocate_function (size t alloc_size)
Return a pointer to newly allocated space with at least alloc size bytes.

[Function]void * reallocate_function (void *ptr, size t old_size, size t
new_size)

Resize a previously allocated block ptr of old size bytes to be new size bytes.

The block may be moved if necessary or if desired, and in that case the smaller of old size
and new size bytes must be copied to the new location. The return value is a pointer to the
resized block, that being the new location if moved or just ptr if not.

ptr is never NULL, it’s always a previously allocated block. new size may be bigger or smaller
than old size.

[Function]void free_function (void *ptr, size t size)
De-allocate the space pointed to by ptr.

ptr is never NULL, it’s always a previously allocated block of size bytes.

A byte here means the unit used by the sizeof operator.

The reallocate function parameter old size and the free function parameter size are passed for
convenience, but of course they can be ignored if not needed by an implementation. The default
functions using malloc and friends for instance don’t use them.

No error return is allowed from any of these functions, if they return then they must have per-
formed the specified operation. In particular note that allocate function or reallocate function
mustn’t return NULL.

93

Getting a different fatal error action is a good use for custom allocation functions, for example
giving a graphical dialog rather than the default print to stderr. How much is possible when
genuinely out of memory is another question though.

There’s currently no defined way for the allocation functions to recover from an error such as out
of memory, they must terminate program execution. A longjmp or throwing a C++ exception
will have undefined results. This may change in the future.

GMP may use allocated blocks to hold pointers to other allocated blocks. This will limit the
assumptions a conservative garbage collection scheme can make.

Since the default GMP allocation uses malloc and friends, those functions will be linked in even
if the first thing a program does is an mp_set_memory_functions. It’s necessary to change the
GMP sources if this is a problem.

[Function]void mp_get_memory_functions (
void *(**alloc_func_ptr) (size t),
void *(**realloc_func_ptr) (void *, size t, size t),
void (**free_func_ptr) (void *, size t))

Get the current allocation functions, storing function pointers to the locations given by the
arguments. If an argument is NULL, that function pointer is not stored.

For example, to get just the current free function,

void (*freefunc) (void *, size_t);

mp_get_memory_functions (NULL, NULL, &freefunc);

94 GNU MP 6.2.1

14 Language Bindings

The following packages and projects offer access to GMP from languages other than C, though
perhaps with varying levels of functionality and efficiency.

C++

• GMP C++ class interface, see Chapter 12 [C++ Class Interface], page 83,
Straightforward interface, expression templates to eliminate temporaries.

• ALP https://www-sop.inria.fr/saga/logiciels/ALP/

Linear algebra and polynomials using templates.

• CLN https://www.ginac.de/CLN/

High level classes for arithmetic.

• Linbox http://www.linalg.org/

Sparse vectors and matrices.

• NTL http://www.shoup.net/ntl/

A C++ number theory library.

Eiffel

• Eiffelroom http://www.eiffelroom.org/node/442

Haskell

• Glasgow Haskell Compiler https://www.haskell.org/ghc/

Java

• Kaffe https://github.com/kaffe/kaffe

Lisp

• GNU Common Lisp https://www.gnu.org/software/gcl/gcl.html

• Librep http://librep.sourceforge.net/

• XEmacs (21.5.18 beta and up) https://www.xemacs.org

Optional big integers, rationals and floats using GMP.

ML

• MLton compiler http://mlton.org/

Objective Caml
• MLGMP https://opam.ocaml.org/packages/mlgmp/

• Numerix http://pauillac.inria.fr/~quercia/

Optionally using GMP.

Oz

• Mozart https://mozart.github.io/

Pascal

• GNU Pascal Compiler http://www.gnu-pascal.de/

GMP unit.

• Numerix http://pauillac.inria.fr/~quercia/

For Free Pascal, optionally using GMP.

Perl

• GMP module, see demos/perl in the GMP sources (see Section 3.10 [Demon-
stration Programs], page 21).

https://www-sop.inria.fr/saga/logiciels/ALP/
https://www.ginac.de/CLN/
http://www.linalg.org/
http://www.shoup.net/ntl/
http://www.eiffelroom.org/node/442
https://www.haskell.org/ghc/
https://github.com/kaffe/kaffe
https://www.gnu.org/software/gcl/gcl.html
http://librep.sourceforge.net/
https://www.xemacs.org
http://mlton.org/
https://opam.ocaml.org/packages/mlgmp/
http://pauillac.inria.fr/~quercia/
https://mozart.github.io/
http://www.gnu-pascal.de/
http://pauillac.inria.fr/~quercia/

Chapter 14: Language Bindings 95

• Math::GMP https://www.cpan.org/

Compatible with Math::BigInt, but not as many functions as the GMP module
above.

• Math::BigInt::GMP https://www.cpan.org/

Plug Math::GMP into normal Math::BigInt operations.

Pike

• pikempz module in the standard distribution, https://pike.lysator.liu.
se/

Prolog

• SWI Prolog http://www.swi-prolog.org/

Arbitrary precision floats.

Python

• GMPY https://code.google.com/p/gmpy/

Ruby

• https://rubygems.org/gems/gmp

Scheme

• GNU Guile https://www.gnu.org/software/guile/guile.html

• RScheme https://www.rscheme.org/

• STklos http://www.stklos.net/

Smalltalk

• GNU Smalltalk http://smalltalk.gnu.org/

Other

• Axiom https://savannah.nongnu.org/projects/axiom

Computer algebra using GCL.

• DrGenius http://drgenius.seul.org/

Geometry system and mathematical programming language.

• GiNaC httsp://www.ginac.de/

C++ computer algebra using CLN.

• GOO https://www.eecs.berkeley.edu/~jrb/goo/

Dynamic object oriented language.

• Maxima https://www.ma.utexas.edu/users/wfs/maxima.html

Macsyma computer algebra using GCL.

• Regina http://regina.sourceforge.net/

Topological calculator.

• Yacas http://yacas.sourceforge.net

Yet another computer algebra system.

https://www.cpan.org/
https://www.cpan.org/
https://pike.lysator.liu.se/
https://pike.lysator.liu.se/
http://www.swi-prolog.org/
https://code.google.com/p/gmpy/
https://rubygems.org/gems/gmp
https://www.gnu.org/software/guile/guile.html
https://www.rscheme.org/
http://www.stklos.net/
http://smalltalk.gnu.org/
https://savannah.nongnu.org/projects/axiom
http://drgenius.seul.org/
httsp://www.ginac.de/
https://www.eecs.berkeley.edu/~jrb/goo/
https://www.ma.utexas.edu/users/wfs/maxima.html
http://regina.sourceforge.net/
http://yacas.sourceforge.net

96 GNU MP 6.2.1

15 Algorithms

This chapter is an introduction to some of the algorithms used for various GMP operations.
The code is likely to be hard to understand without knowing something about the algorithms.

Some GMP internals are mentioned, but applications that expect to be compatible with future
GMP releases should take care to use only the documented functions.

15.1 Multiplication

N×N limb multiplications and squares are done using one of seven algorithms, as the size N
increases.

Algorithm Threshold

Basecase (none)

Karatsuba MUL_TOOM22_THRESHOLD

Toom-3 MUL_TOOM33_THRESHOLD

Toom-4 MUL_TOOM44_THRESHOLD

Toom-6.5 MUL_TOOM6H_THRESHOLD

Toom-8.5 MUL_TOOM8H_THRESHOLD

FFT MUL_FFT_THRESHOLD

Similarly for squaring, with the SQR thresholds.

N×M multiplications of operands with different sizes above MUL_TOOM22_THRESHOLD are cur-
rently done by special Toom-inspired algorithms or directly with FFT, depending on operand
size (see Section 15.1.8 [Unbalanced Multiplication], page 102).

15.1.1 Basecase Multiplication

Basecase N×M multiplication is a straightforward rectangular set of cross-products, the same
as long multiplication done by hand and for that reason sometimes known as the schoolbook or
grammar school method. This is an O(NM) algorithm. See Knuth section 4.3.1 algorithm M
(see Appendix B [References], page 130), and the mpn/generic/mul_basecase.c code.

Assembly implementations of mpn_mul_basecase are essentially the same as the generic C code,
but have all the usual assembly tricks and obscurities introduced for speed.

A square can be done in roughly half the time of a multiply, by using the fact that the cross
products above and below the diagonal are the same. A triangle of products below the diagonal
is formed, doubled (left shift by one bit), and then the products on the diagonal added. This can
be seen in mpn/generic/sqr_basecase.c. Again the assembly implementations take essentially
the same approach.

u0

u1

u2

u3

u4

u0 u1 u2 u3 u4

d

d

d

d

d

In practice squaring isn’t a full 2× faster than multiplying, it’s usually around 1.5×. Less than
1.5× probably indicates mpn_sqr_basecase wants improving on that CPU.

Chapter 15: Algorithms 97

On some CPUs mpn_mul_basecase can be faster than the generic C mpn_sqr_basecase on some
small sizes. SQR_BASECASE_THRESHOLD is the size at which to use mpn_sqr_basecase, this will
be zero if that routine should be used always.

15.1.2 Karatsuba Multiplication

The Karatsuba multiplication algorithm is described in Knuth section 4.3.3 part A, and various
other textbooks. A brief description is given here.

The inputs x and y are treated as each split into two parts of equal length (or the most significant
part one limb shorter if N is odd).

high low

x1 x0

y1 y0

Let b be the power of 2 where the split occurs, i.e. if x0 is k limbs (y0 the same) then b =

2k∗mp bits per limb. With that x = x1b+ x0 and y = y1b+ y0, and the following holds,

xy = (b2 + b)x1y1 − b(x1 − x0)(y1 − y0) + (b+ 1)x0y0

This formula means doing only three multiplies of (N/2)×(N/2) limbs, whereas a basecase
multiply of N×N limbs is equivalent to four multiplies of (N/2)×(N/2). The factors (b2 + b) etc
represent the positions where the three products must be added.

high low

x1y1 x0y0

+ x1y1

+ x0y0

− (x1 − x0)(y1 − y0)

The term (x1 − x0)(y1 − y0) is best calculated as an absolute value, and the sign used to choose
to add or subtract. Notice the sum high(x0y0)+ low(x1y1) occurs twice, so it’s possible to do 5k
limb additions, rather than 6k, but in GMP extra function call overheads outweigh the saving.

Squaring is similar to multiplying, but with x = y the formula reduces to an equivalent with
three squares,

x2 = (b2 + b)x2
1 − b(x1 − x0)

2 + (b+ 1)x2
0

The final result is accumulated from those three squares the same way as for the three multiplies
above. The middle term (x1 − x0)

2 is now always positive.

A similar formula for both multiplying and squaring can be constructed with a middle term
(x1 + x0)(y1 + y0). But those sums can exceed k limbs, leading to more carry handling and
additions than the form above.

Karatsuba multiplication is asymptotically an O(N1.585) algorithm, the exponent being
log 3/ log 2, representing 3 multiplies each 1/2 the size of the inputs. This is a big improvement
over the basecase multiply at O(N2) and the advantage soon overcomes the extra additions
Karatsuba performs. MUL_TOOM22_THRESHOLD can be as little as 10 limbs. The SQR threshold is
usually about twice the MUL.

The basecase algorithm will take a time of the form M(N) = aN2 + bN + c and the Karatsuba
algorithmK(N) = 3M(N/2)+dN+e, which expands toK(N) = 3

4
aN2+ 3

2
bN+3c+dN+e. The

98 GNU MP 6.2.1

factor 3
4
for a means per-crossproduct speedups in the basecase code will increase the threshold

since they benefit M(N) more than K(N). And conversely the 3
2
for b means linear style

speedups of b will increase the threshold since they benefit K(N) more than M(N). The latter
can be seen for instance when adding an optimized mpn_sqr_diagonal to mpn_sqr_basecase.
Of course all speedups reduce total time, and in that sense the algorithm thresholds are merely
of academic interest.

15.1.3 Toom 3-Way Multiplication

The Karatsuba formula is the simplest case of a general approach to splitting inputs that leads
to both Toom and FFT algorithms. A description of Toom can be found in Knuth section 4.3.3,
with an example 3-way calculation after Theorem A. The 3-way form used in GMP is described
here.

The operands are each considered split into 3 pieces of equal length (or the most significant part
1 or 2 limbs shorter than the other two).

high low

x2 x1 x0

y2 y1 y0

These parts are treated as the coefficients of two polynomials

X(t) = x2t
2 + x1t + x0

Y (t) = y2t
2 + y1t + y0

Let b equal the power of 2 which is the size of the x0, x1, y0 and y1 pieces, i.e. if they’re k limbs

each then b = 2k∗mp bits per limb. With this x = X(b) and y = Y (b).

Let a polynomial W (t) = X(t)Y (t) and suppose its coefficients are

W (t) = w4t
4 + w3t

3 + w2t
2 + w1t + w0

The wi are going to be determined, and when they are they’ll give the final result using w = W (b),
since xy = X(b)Y (b). The coefficients will be roughly b2 each, and the final W (b) will be an
addition like,

high low

w4

w3

w2

w1

w0

The wi coefficients could be formed by a simple set of cross products, like w4 = x2y2, w3 =
x2y1 + x1y2, w2 = x2y0 + x1y1 + x0y2 etc, but this would need all nine xiyj for i, j = 0, 1, 2, and
would be equivalent merely to a basecase multiply. Instead the following approach is used.

X(t) and Y (t) are evaluated and multiplied at 5 points, giving values of W (t) at those points.
In GMP the following points are used,

Point Value

t = 0 x0y0, which gives w0 immediately

t = 1 (x2 + x1 + x0)(y2 + y1 + y0)

Chapter 15: Algorithms 99

t = −1 (x2 − x1 + x0)(y2 − y1 + y0)

t = 2 (4x2 + 2x1 + x0)(4y2 + 2y1 + y0)

t =∞ x2y2, which gives w4 immediately

At t = −1 the values can be negative and that’s handled using the absolute values and tracking
the sign separately. At t =∞ the value is actually limt→∞

X(t)Y (t)

t4
, but it’s much easier to think

of as simply x2y2 giving w4 immediately (much like x0y0 at t = 0 gives w0 immediately).

Each of the points substituted into W (t) = w4t
4 + · · ·+w0 gives a linear combination of the wi

coefficients, and the value of those combinations has just been calculated.

W (0) = w0

W (1) = w4 + w3 + w2 + w1 + w0

W (−1) = w4 − w3 + w2 − w1 + w0

W (2) = 16w4 + 8w3 + 4w2 + 2w1 + w0

W (∞) = w4

This is a set of five equations in five unknowns, and some elementary linear algebra quickly
isolates each wi. This involves adding or subtracting one W (t) value from another, and a couple
of divisions by powers of 2 and one division by 3, the latter using the special mpn_divexact_by3
(see Section 15.2.5 [Exact Division], page 104).

The conversion of W (t) values to the coefficients is interpolation. A polynomial of degree 4 like
W (t) is uniquely determined by values known at 5 different points. The points are arbitrary and
can be chosen to make the linear equations come out with a convenient set of steps for quickly
isolating the wi.

Squaring follows the same procedure as multiplication, but there’s only one X(t) and it’s evalu-
ated at the 5 points, and those values squared to give values of W (t). The interpolation is then
identical, and in fact the same toom_interpolate_5pts subroutine is used for both squaring
and multiplying.

Toom-3 is asymptotically O(N1.465), the exponent being log 5/ log 3, representing 5 recursive
multiplies of 1/3 the original size each. This is an improvement over Karatsuba at O(N1.585),
though Toom does more work in the evaluation and interpolation and so it only realizes its
advantage above a certain size.

Near the crossover between Toom-3 and Karatsuba there’s generally a range of sizes where the
difference between the two is small. MUL_TOOM33_THRESHOLD is a somewhat arbitrary point in
that range and successive runs of the tune program can give different values due to small varia-
tions in measuring. A graph of time versus size for the two shows the effect, see tune/README.

At the fairly small sizes where the Toom-3 thresholds occur it’s worth remembering that the
asymptotic behaviour for Karatsuba and Toom-3 can’t be expected to make accurate predictions,
due of course to the big influence of all sorts of overheads, and the fact that only a few recursions
of each are being performed. Even at large sizes there’s a good chance machine dependent effects
like cache architecture will mean actual performance deviates from what might be predicted.

The formula given for the Karatsuba algorithm (see Section 15.1.2 [Karatsuba Multiplication],
page 97) has an equivalent for Toom-3 involving only five multiplies, but this would be compli-
cated and unenlightening.

An alternate view of Toom-3 can be found in Zuras (see Appendix B [References], page 130),
using a vector to represent the x and y splits and a matrix multiplication for the evaluation
and interpolation stages. The matrix inverses are not meant to be actually used, and they have
elements with values much greater than in fact arise in the interpolation steps. The diagram

100 GNU MP 6.2.1

shown for the 3-way is attractive, but again doesn’t have to be implemented that way and for
example with a bit of rearrangement just one division by 6 can be done.

15.1.4 Toom 4-Way Multiplication

Karatsuba and Toom-3 split the operands into 2 and 3 coefficients, respectively. Toom-4 anal-
ogously splits the operands into 4 coefficients. Using the notation from the section on Toom-3
multiplication, we form two polynomials:

X(t) = x3t
3 + x2t

2 + x1t + x0

Y (t) = y3t
3 + y2t

2 + y1t + y0

X(t) and Y (t) are evaluated and multiplied at 7 points, giving values of W (t) at those points.
In GMP the following points are used,

Point Value

t = 0 x0y0, which gives w0 immediately

t = 1/2 (x3 + 2x2 + 4x1 + 8x0)(y3 + 2y2 + 4y1 + 8y0)

t = −1/2 (−x3 + 2x2 − 4x1 + 8x0)(−y3 + 2y2 − 4y1 + 8y0)

t = 1 (x3 + x2 + x1 + x0)(y3 + y2 + y1 + y0)

t = −1 (−x3 + x2 − x1 + x0)(−y3 + y2 − y1 + y0)

t = 2 (8x3 + 4x2 + 2x1 + x0)(8y3 + 4y2 + 2y1 + y0)

t =∞ x3y3, which gives w6 immediately

The number of additions and subtractions for Toom-4 is much larger than for Toom-3. But
several subexpressions occur multiple times, for example x2 + x0, occurs for both t = 1 and
t = −1.

Toom-4 is asymptotically O(N1.404), the exponent being log 7/ log 4, representing 7 recursive
multiplies of 1/4 the original size each.

15.1.5 Higher degree Toom’n’half

The Toom algorithms described above (see Section 15.1.3 [Toom 3-Way Multiplication], page 98,
see Section 15.1.4 [Toom 4-Way Multiplication], page 100) generalizes to split into an arbitrary
number of pieces. In general a split of two equally long operands into r pieces leads to evaluations
and pointwise multiplications done at 2r − 1 points. To fully exploit symmetries it would be
better to have a multiple of 4 points, that’s why for higher degree Toom’n’half is used.

Toom’n’half means that the existence of one more piece is considered for a single operand. It
can be virtual, i.e. zero, or real, when the two operand are not exactly balanced. By choosing
an even r, Toom-r 1

2
requires 2r points, a multiple of four.

The quadruplets of points include 0, ∞, +1, -1 and ±2i, ±2−i . Each of them giving shortcuts
for the evaluation phase and for some steps in the interpolation phase. Further tricks are used
to reduce the memory footprint of the whole multiplication algorithm to a memory buffer equal
in size to the result of the product.

Current GMP uses both Toom-6’n’half and Toom-8’n’half.

15.1.6 FFT Multiplication

At large to very large sizes a Fermat style FFT multiplication is used, following Schönhage and
Strassen (see Appendix B [References], page 130). Descriptions of FFTs in various forms can
be found in many textbooks, for instance Knuth section 4.3.3 part C or Lipson chapter IX. A
brief description of the form used in GMP is given here.

Chapter 15: Algorithms 101

The multiplication done is xy mod 2N + 1, for a given N . A full product xy is obtained by
choosing N ≥ bits(x)+bits(y) and padding x and y with high zero limbs. The modular product
is the native form for the algorithm, so padding to get a full product is unavoidable.

The algorithm follows a split, evaluate, pointwise multiply, interpolate and combine similar to
that described above for Karatsuba and Toom-3. A k parameter controls the split, with an FFT-
k splitting into 2k pieces ofM = N/2k bits each. N must be a multiple of 2k×mp bits per limb

so the split falls on limb boundaries, avoiding bit shifts in the split and combine stages.

The evaluations, pointwise multiplications, and interpolation, are all done modulo 2N
′
+1 where

N ′ is 2M + k + 3 rounded up to a multiple of 2k and of mp_bits_per_limb. The results of
interpolation will be the following negacyclic convolution of the input pieces, and the choice of
N ′ ensures these sums aren’t truncated.

wn =
∑

i+j=b2k+n
b=0,1

(−1)bxiyj

The points used for the evaluation are gi for i = 0 to 2k − 1 where g = 22N
′/2k . g is a 2kth root

of unity mod 2N
′
+ 1, which produces necessary cancellations at the interpolation stage, and

it’s also a power of 2 so the fast Fourier transforms used for the evaluation and interpolation do
only shifts, adds and negations.

The pointwise multiplications are done modulo 2N
′
+ 1 and either recurse into a further FFT

or use a plain multiplication (Toom-3, Karatsuba or basecase), whichever is optimal at the size
N ′. The interpolation is an inverse fast Fourier transform. The resulting set of sums of xiyj are
added at appropriate offsets to give the final result.

Squaring is the same, but x is the only input so it’s one transform at the evaluate stage and the
pointwise multiplies are squares. The interpolation is the same.

For a mod 2N + 1 product, an FFT-k is an O(Nk/(k−1)) algorithm, the exponent representing
2k recursed modular multiplies each 1/2k−1 the size of the original. Each successive k is an
asymptotic improvement, but overheads mean each is only faster at bigger and bigger sizes. In
the code, MUL_FFT_TABLE and SQR_FFT_TABLE are the thresholds where each k is used. Each
new k effectively swaps some multiplying for some shifts, adds and overheads.

A mod 2N+1 product can be formed with a normal N×N → 2N bit multiply plus a subtraction,
so an FFT and Toom-3 etc can be compared directly. A k = 4 FFT at O(N1.333) can be expected
to be the first faster than Toom-3 at O(N1.465). In practice this is what’s found, with MUL_FFT_

MODF_THRESHOLD and SQR_FFT_MODF_THRESHOLD being between 300 and 1000 limbs, depending
on the CPU. So far it’s been found that only very large FFTs recurse into pointwise multiplies
above these sizes.

When an FFT is to give a full product, the change of N to 2N doesn’t alter the theoretical
complexity for a given k, but for the purposes of considering where an FFT might be first used
it can be assumed that the FFT is recursing into a normal multiply and that on that basis it’s
doing 2k recursed multiplies each 1/2k−2 the size of the inputs, making it O(Nk/(k−2)). This
would mean k = 7 at O(N1.4) would be the first FFT faster than Toom-3. In practice MUL_

FFT_THRESHOLD and SQR_FFT_THRESHOLD have been found to be in the k = 8 range, somewhere
between 3000 and 10000 limbs.

The way N is split into 2k pieces and then 2M + k + 3 is rounded up to a multiple of 2k and
mp_bits_per_limb means that when 2k ≥ mp bits per limb the effective N is a multiple of
22k−1 bits. The +k + 3 means some values of N just under such a multiple will be rounded
to the next. The complexity calculations above assume that a favourable size is used, meaning
one which isn’t padded through rounding, and it’s also assumed that the extra +k + 3 bits are
negligible at typical FFT sizes.

102 GNU MP 6.2.1

The practical effect of the 22k−1 constraint is to introduce a step-effect into measured speeds.
For example k = 8 will round N up to a multiple of 32768 bits, so for a 32-bit limb there’ll be
512 limb groups of sizes for which mpn_mul_n runs at the same speed. Or for k = 9 groups of
2048 limbs, k = 10 groups of 8192 limbs, etc. In practice it’s been found each k is used at quite
small multiples of its size constraint and so the step effect is quite noticeable in a time versus
size graph.

The threshold determinations currently measure at the mid-points of size steps, but this is sub-
optimal since at the start of a new step it can happen that it’s better to go back to the previous
k for a while. Something more sophisticated for MUL_FFT_TABLE and SQR_FFT_TABLE will be
needed.

15.1.7 Other Multiplication

The Toom algorithms described above (see Section 15.1.3 [Toom 3-Way Multiplication], page 98,
see Section 15.1.4 [Toom 4-Way Multiplication], page 100) generalizes to split into an arbitrary
number of pieces, as per Knuth section 4.3.3 algorithm C. This is not currently used. The notes
here are merely for interest.

In general a split into r + 1 pieces is made, and evaluations and pointwise multiplications done
at 2r+1 points. A 4-way split does 7 pointwise multiplies, 5-way does 9, etc. Asymptotically an
(r+1)-way algorithm is O(N log(2r+1)/log(r+1)). Only the pointwise multiplications count towards
big-O complexity, but the time spent in the evaluate and interpolate stages grows with r and has
a significant practical impact, with the asymptotic advantage of each r realized only at bigger
and bigger sizes. The overheads grow as O(Nr), whereas in an r = 2k FFT they grow only as
O(N log r).

Knuth algorithm C evaluates at points 0,1,2,. . . ,2r, but exercise 4 uses −r,. . . ,0,. . . ,r and the
latter saves some small multiplies in the evaluate stage (or rather trades them for additions),
and has a further saving of nearly half the interpolate steps. The idea is to separate odd and
even final coefficients and then perform algorithm C steps C7 and C8 on them separately. The
divisors at step C7 become j2 and the multipliers at C8 become 2tj − j2.

Splitting odd and even parts through positive and negative points can be thought of as using −1
as a square root of unity. If a 4th root of unity was available then a further split and speedup
would be possible, but no such root exists for plain integers. Going to complex integers with
i =
√
−1 doesn’t help, essentially because in Cartesian form it takes three real multiplies to do

a complex multiply. The existence of 2kth roots of unity in a suitable ring or field lets the fast
Fourier transform keep splitting and get to O(N log r).

Floating point FFTs use complex numbers approximating Nth roots of unity. Some processors
have special support for such FFTs. But these are not used in GMP since it’s very difficult to
guarantee an exact result (to some number of bits). An occasional difference of 1 in the last bit
might not matter to a typical signal processing algorithm, but is of course of vital importance
to GMP.

15.1.8 Unbalanced Multiplication

Multiplication of operands with different sizes, both below MUL_TOOM22_THRESHOLD are done
with plain schoolbook multiplication (see Section 15.1.1 [Basecase Multiplication], page 96).

For really large operands, we invoke FFT directly.

For operands between these sizes, we use Toom inspired algorithms suggested by Alberto Zanoni
and Marco Bodrato. The idea is to split the operands into polynomials of different degree. GMP
currently splits the smaller operand onto 2 coefficients, i.e., a polynomial of degree 1, but the
larger operand can be split into 2, 3, or 4 coefficients, i.e., a polynomial of degree 1 to 3.

Chapter 15: Algorithms 103

15.2 Division Algorithms

15.2.1 Single Limb Division

N×1 division is implemented using repeated 2×1 divisions from high to low, either with a
hardware divide instruction or a multiplication by inverse, whichever is best on a given CPU.

The multiply by inverse follows “Improved division by invariant integers” by Möller and
Granlund (see Appendix B [References], page 130) and is implemented as udiv_qrnnd_preinv
in gmp-impl.h. The idea is to have a fixed-point approximation to 1/d (see invert_limb) and
then multiply by the high limb (plus one bit) of the dividend to get a quotient q. With d nor-
malized (high bit set), q is no more than 1 too small. Subtracting qd from the dividend gives a
remainder, and reveals whether q or q − 1 is correct.

The result is a division done with two multiplications and four or five arithmetic operations. On
CPUs with low latency multipliers this can be much faster than a hardware divide, though the
cost of calculating the inverse at the start may mean it’s only better on inputs bigger than say
4 or 5 limbs.

When a divisor must be normalized, either for the generic C __udiv_qrnnd_c or the multiply
by inverse, the division performed is actually a2k by d2k where a is the dividend and k is the
power necessary to have the high bit of d2k set. The bit shifts for the dividend are usually
accomplished “on the fly” meaning by extracting the appropriate bits at each step. Done this
way the quotient limbs come out aligned ready to store. When only the remainder is wanted,
an alternative is to take the dividend limbs unshifted and calculate r = a mod d2k followed by
an extra final step r2k mod d2k. This can help on CPUs with poor bit shifts or few registers.

The multiply by inverse can be done two limbs at a time. The calculation is basically the same,
but the inverse is two limbs and the divisor treated as if padded with a low zero limb. This
means more work, since the inverse will need a 2×2 multiply, but the four 1×1s to do that
are independent and can therefore be done partly or wholly in parallel. Likewise for a 2×1
calculating qd. The net effect is to process two limbs with roughly the same two multiplies
worth of latency that one limb at a time gives. This extends to 3 or 4 limbs at a time, though
the extra work to apply the inverse will almost certainly soon reach the limits of multiplier
throughput.

A similar approach in reverse can be taken to process just half a limb at a time if the divisor is
only a half limb. In this case the 1×1 multiply for the inverse effectively becomes two 1

2×1 for
each limb, which can be a saving on CPUs with a fast half limb multiply, or in fact if the only
multiply is a half limb, and especially if it’s not pipelined.

15.2.2 Basecase Division

Basecase N×M division is like long division done by hand, but in base 2mp bits per limb. See
Knuth section 4.3.1 algorithm D, and mpn/generic/sb_divrem_mn.c.

Briefly stated, while the dividend remains larger than the divisor, a high quotient limb is formed
and the N×1 product qd subtracted at the top end of the dividend. With a normalized divisor
(most significant bit set), each quotient limb can be formed with a 2×1 division and a 1×1
multiplication plus some subtractions. The 2×1 division is by the high limb of the divisor and
is done either with a hardware divide or a multiply by inverse (the same as in Section 15.2.1
[Single Limb Division], page 103) whichever is faster. Such a quotient is sometimes one too big,
requiring an addback of the divisor, but that happens rarely.

With Q=N−M being the number of quotient limbs, this is an O(QM) algorithm and will run
at a speed similar to a basecase Q×M multiplication, differing in fact only in the extra multiply
and divide for each of the Q quotient limbs.

104 GNU MP 6.2.1

15.2.3 Divide and Conquer Division

For divisors larger than DC_DIV_QR_THRESHOLD, division is done by dividing. Or to be precise
by a recursive divide and conquer algorithm based on work by Moenck and Borodin, Jebelean,
and Burnikel and Ziegler (see Appendix B [References], page 130).

The algorithm consists essentially of recognising that a 2N×N division can be done with the
basecase division algorithm (see Section 15.2.2 [Basecase Division], page 103), but using N/2
limbs as a base, not just a single limb. This way the multiplications that arise are (N/2)×(N/2)
and can take advantage of Karatsuba and higher multiplication algorithms (see Section 15.1
[Multiplication Algorithms], page 96). The two “digits” of the quotient are formed by recursive
N×(N/2) divisions.

If the (N/2)×(N/2) multiplies are done with a basecase multiplication then the work is about the
same as a basecase division, but with more function call overheads and with some subtractions
separated from the multiplies. These overheads mean that it’s only when N/2 is above MUL_

TOOM22_THRESHOLD that divide and conquer is of use.

DC_DIV_QR_THRESHOLD is based on the divisor size N, so it will be somewhere above twice
MUL_TOOM22_THRESHOLD, but how much above depends on the CPU. An optimized mpn_mul_

basecase can lower DC_DIV_QR_THRESHOLD a little by offering a ready-made advantage over
repeated mpn_submul_1 calls.

Divide and conquer is asymptotically O(M(N) logN) where M(N) is the time for an N×N
multiplication done with FFTs. The actual time is a sum over multiplications of the recursed
sizes, as can be seen near the end of section 2.2 of Burnikel and Ziegler. For example, within
the Toom-3 range, divide and conquer is 2.63M(N). With higher algorithms the M(N) term
improves and the multiplier tends to logN . In practice, at moderate to large sizes, a 2N×N
division is about 2 to 4 times slower than an N×N multiplication.

15.2.4 Block-Wise Barrett Division

For the largest divisions, a block-wise Barrett division algorithm is used. Here, the divisor is
inverted to a precision determined by the relative size of the dividend and divisor. Blocks of
quotient limbs are then generated by multiplying blocks from the dividend by the inverse.

Our block-wise algorithm computes a smaller inverse than in the plain Barrett algorithm. For
a 2n/n division, the inverse will be just dn/2e limbs.

15.2.5 Exact Division

A so-called exact division is when the dividend is known to be an exact multiple of the divisor.
Jebelean’s exact division algorithm uses this knowledge to make some significant optimizations
(see Appendix B [References], page 130).

The idea can be illustrated in decimal for example with 368154 divided by 543. Because the
low digit of the dividend is 4, the low digit of the quotient must be 8. This is arrived at from
4×7 mod 10, using the fact 7 is the modular inverse of 3 (the low digit of the divisor), since
3×7≡ 1 mod 10. So 8×543 = 4344 can be subtracted from the dividend leaving 363810. Notice
the low digit has become zero.

The procedure is repeated at the second digit, with the next quotient digit 7 (1×7 mod 10),
subtracting 7×543 = 3801, leaving 325800. And finally at the third digit with quotient digit 6
(8×7 mod 10), subtracting 6×543 = 3258 leaving 0. So the quotient is 678.

Notice however that the multiplies and subtractions don’t need to extend past the low three
digits of the dividend, since that’s enough to determine the three quotient digits. For the last

Chapter 15: Algorithms 105

quotient digit no subtraction is needed at all. On a 2N×N division like this one, only about half
the work of a normal basecase division is necessary.

For an N×M exact division producing Q=N−M quotient limbs, the saving over a normal basecase
division is in two parts. Firstly, each of the Q quotient limbs needs only one multiply, not a 2×1
divide and multiply. Secondly, the crossproducts are reduced whenQ > M toQM−M(M+1)/2,
or when Q ≤ M to Q(Q − 1)/2. Notice the savings are complementary. If Q is big then many
divisions are saved, or if Q is small then the crossproducts reduce to a small number.

The modular inverse used is calculated efficiently by binvert_limb in gmp-impl.h. This does
four multiplies for a 32-bit limb, or six for a 64-bit limb. tune/modlinv.c has some alternate
implementations that might suit processors better at bit twiddling than multiplying.

The sub-quadratic exact division described by Jebelean in “Exact Division with Karatsuba
Complexity” is not currently implemented. It uses a rearrangement similar to the divide and
conquer for normal division (see Section 15.2.3 [Divide and Conquer Division], page 104), but
operating from low to high. A further possibility not currently implemented is “Bidirectional
Exact Integer Division” by Krandick and Jebelean which forms quotient limbs from both the
high and low ends of the dividend, and can halve once more the number of crossproducts needed
in a 2N×N division.

A special case exact division by 3 exists in mpn_divexact_by3, supporting Toom-3 multiplication
and mpq canonicalizations. It forms quotient digits with a multiply by the modular inverse of 3
(which is 0xAA..AAB) and uses two comparisons to determine a borrow for the next limb. The
multiplications don’t need to be on the dependent chain, as long as the effect of the borrows is
applied, which can help chips with pipelined multipliers.

15.2.6 Exact Remainder

If the exact division algorithm is done with a full subtraction at each stage and the dividend
isn’t a multiple of the divisor, then low zero limbs are produced but with a remainder in the
high limbs. For dividend a, divisor d, quotient q, and b = 2mp bits per limb, this remainder
r is of the form

a = qd+ rbn

n represents the number of zero limbs produced by the subtractions, that being the number of
limbs produced for q. r will be in the range 0 ≤ r < d and can be viewed as a remainder, but
one shifted up by a factor of bn.

Carrying out full subtractions at each stage means the same number of cross products must be
done as a normal division, but there’s still some single limb divisions saved. When d is a single
limb some simplifications arise, providing good speedups on a number of processors.

The functions mpn_divexact_by3, mpn_modexact_1_odd and the internal mpn_redc_X functions
differ subtly in how they return r, leading to some negations in the above formula, but all are
essentially the same.

Clearly r is zero when a is a multiple of d, and this leads to divisibility or congruence tests which
are potentially more efficient than a normal division.

The factor of bn on r can be ignored in a GCD when d is odd, hence the use of mpn_modexact_
1_odd by mpn_gcd_1 and mpz_kronecker_ui etc (see Section 15.3 [Greatest Common Divisor
Algorithms], page 106).

Montgomery’s REDC method for modular multiplications uses operands of the form of xb−n

and yb−n and on calculating (xb−n)(yb−n) uses the factor of bn in the exact remainder to reach a
product in the same form (xy)b−n (see Section 15.4.2 [Modular Powering Algorithm], page 109).

106 GNU MP 6.2.1

Notice that r generally gives no useful information about the ordinary remainder a mod d since
bn mod d could be anything. If however bn ≡ 1 mod d, then r is the negative of the ordinary
remainder. This occurs whenever d is a factor of bn−1, as for example with 3 in mpn_divexact_

by3. For a 32 or 64 bit limb other such factors include 5, 17 and 257, but no particular use has
been found for this.

15.2.7 Small Quotient Division

An N×M division where the number of quotient limbs Q=N−M is small can be optimized
somewhat.

An ordinary basecase division normalizes the divisor by shifting it to make the high bit set,
shifting the dividend accordingly, and shifting the remainder back down at the end of the
calculation. This is wasteful if only a few quotient limbs are to be formed. Instead a division
of just the top 2Q limbs of the dividend by the top Q limbs of the divisor can be used to form
a trial quotient. This requires only those limbs normalized, not the whole of the divisor and
dividend.

A multiply and subtract then applies the trial quotient to the M−Q unused limbs of the divisor
and N−Q dividend limbs (which includes Q limbs remaining from the trial quotient division).
The starting trial quotient can be 1 or 2 too big, but all cases of 2 too big and most cases of
1 too big are detected by first comparing the most significant limbs that will arise from the
subtraction. An addback is done if the quotient still turns out to be 1 too big.

This whole procedure is essentially the same as one step of the basecase algorithm done in a Q
limb base, though with the trial quotient test done only with the high limbs, not an entire Q
limb “digit” product. The correctness of this weaker test can be established by following the
argument of Knuth section 4.3.1 exercise 20 but with the v2q̂ > br̂+ u2 condition appropriately
relaxed.

15.3 Greatest Common Divisor

15.3.1 Binary GCD

At small sizes GMP uses an O(N2) binary style GCD. This is described in many textbooks,
for example Knuth section 4.5.2 algorithm B. It simply consists of successively reducing odd
operands a and b using

a, b = abs (a− b),min (a, b)
strip factors of 2 from a

The Euclidean GCD algorithm, as per Knuth algorithms E and A, repeatedly computes the
quotient q = ba/bc and replaces a, b by v, u − qv. The binary algorithm has so far been found
to be faster than the Euclidean algorithm everywhere. One reason the binary method does well
is that the implied quotient at each step is usually small, so often only one or two subtractions
are needed to get the same effect as a division. Quotients 1, 2 and 3 for example occur 67.7%
of the time, see Knuth section 4.5.3 Theorem E.

When the implied quotient is large, meaning b is much smaller than a, then a division is worth-
while. This is the basis for the initial a mod b reductions in mpn_gcd and mpn_gcd_1 (the latter
for both N×1 and 1×1 cases). But after that initial reduction, big quotients occur too rarely to
make it worth checking for them.

The final 1 × 1 GCD in mpn_gcd_1 is done in the generic C code as described above. For two
N-bit operands, the algorithm takes about 0.68 iterations per bit. For optimum performance
some attention needs to be paid to the way the factors of 2 are stripped from a.

Chapter 15: Algorithms 107

Firstly it may be noted that in twos complement the number of low zero bits on a − b is the
same as b − a, so counting or testing can begin on a − b without waiting for abs (a − b) to be
determined.

A loop stripping low zero bits tends not to branch predict well, since the condition is data
dependent. But on average there’s only a few low zeros, so an option is to strip one or two bits
arithmetically then loop for more (as done for AMD K6). Or use a lookup table to get a count
for several bits then loop for more (as done for AMD K7). An alternative approach is to keep
just one of a or b odd and iterate

a, b = abs (a− b),min (a, b)
a = a/2 if even
b = b/2 if even

This requires about 1.25 iterations per bit, but stripping of a single bit at each step avoids
any branching. Repeating the bit strip reduces to about 0.9 iterations per bit, which may be a
worthwhile tradeoff.

Generally with the above approaches a speed of perhaps 6 cycles per bit can be achieved, which
is still not terribly fast with for instance a 64-bit GCD taking nearly 400 cycles. It’s this sort
of time which means it’s not usually advantageous to combine a set of divisibility tests into a
GCD.

Currently, the binary algorithm is used for GCD only when N < 3.

15.3.2 Lehmer’s algorithm

Lehmer’s improvement of the Euclidean algorithms is based on the observation that the initial
part of the quotient sequence depends only on the most significant parts of the inputs. The
variant of Lehmer’s algorithm used in GMP splits off the most significant two limbs, as suggested,
e.g., in “A Double-Digit Lehmer-Euclid Algorithm” by Jebelean (see Appendix B [References],
page 130). The quotients of two double-limb inputs are collected as a 2 by 2 matrix with single-
limb elements. This is done by the function mpn_hgcd2. The resulting matrix is applied to the
inputs using mpn_mul_1 and mpn_submul_1. Each iteration usually reduces the inputs by almost
one limb. In the rare case of a large quotient, no progress can be made by examining just the
most significant two limbs, and the quotient is computed using plain division.

The resulting algorithm is asymptotically O(N2), just as the Euclidean algorithm and the binary
algorithm. The quadratic part of the work are the calls to mpn_mul_1 and mpn_submul_1. For
small sizes, the linear work is also significant. There are roughly N calls to the mpn_hgcd2

function. This function uses a couple of important optimizations:

• It uses the same relaxed notion of correctness as mpn_hgcd (see next section). This means
that when called with the most significant two limbs of two large numbers, the returned
matrix does not always correspond exactly to the initial quotient sequence for the two large
numbers; the final quotient may sometimes be one off.

• It takes advantage of the fact the quotients are usually small. The division operator is
not used, since the corresponding assembler instruction is very slow on most architectures.
(This code could probably be improved further, it uses many branches that are unfriendly
to prediction).

• It switches from double-limb calculations to single-limb calculations half-way through, when
the input numbers have been reduced in size from two limbs to one and a half.

15.3.3 Subquadratic GCD

For inputs larger than GCD_DC_THRESHOLD, GCD is computed via the HGCD (Half GCD) func-
tion, as a generalization to Lehmer’s algorithm.

108 GNU MP 6.2.1

Let the inputs a, b be of size N limbs each. Put S = bN/2c + 1. Then HGCD(a,b) returns a
transformation matrix T with non-negative elements, and reduced numbers (c; d) = T−1(a; b).
The reduced numbers c, d must be larger than S limbs, while their difference abs(c− d) must fit
in S limbs. The matrix elements will also be of size roughly N/2.

The HGCD base case uses Lehmer’s algorithm, but with the above stop condition that returns
reduced numbers and the corresponding transformation matrix half-way through. For inputs
larger than HGCD_THRESHOLD, HGCD is computed recursively, using the divide and conquer
algorithm in “On Schönhage’s algorithm and subquadratic integer GCD computation” by Möller
(see Appendix B [References], page 130). The recursive algorithm consists of these main steps.

• Call HGCD recursively, on the most significant N/2 limbs. Apply the resulting matrix T1

to the full numbers, reducing them to a size just above 3N/2.

• Perform a small number of division or subtraction steps to reduce the numbers to size below
3N/2. This is essential mainly for the unlikely case of large quotients.

• Call HGCD recursively, on the most significant N/2 limbs of the reduced numbers. Apply
the resulting matrix T2 to the full numbers, reducing them to a size just above N/2.

• Compute T = T1T2.

• Perform a small number of division and subtraction steps to satisfy the requirements, and
return.

GCD is then implemented as a loop around HGCD, similarly to Lehmer’s algorithm. Where
Lehmer repeatedly chops off the top two limbs, calls mpn_hgcd2, and applies the resulting matrix
to the full numbers, the sub-quadratic GCD chops off the most significant third of the limbs
(the proportion is a tuning parameter, and 1/3 seems to be more efficient than, e.g, 1/2), calls
mpn_hgcd, and applies the resulting matrix. Once the input numbers are reduced to size below
GCD_DC_THRESHOLD, Lehmer’s algorithm is used for the rest of the work.

The asymptotic running time of both HGCD and GCD is O(M(N) logN), where M(N) is the
time for multiplying two N -limb numbers.

15.3.4 Extended GCD

The extended GCD function, or GCDEXT, calculates gcd (a, b) and also cofactors x and y
satisfying ax + by = gcd(a, b). All the algorithms used for plain GCD are extended to handle
this case. The binary algorithm is used only for single-limb GCDEXT. Lehmer’s algorithm is
used for sizes up to GCDEXT_DC_THRESHOLD. Above this threshold, GCDEXT is implemented as
a loop around HGCD, but with more book-keeping to keep track of the cofactors. This gives
the same asymptotic running time as for GCD and HGCD, O(M(N) logN)

One difference to plain GCD is that while the inputs a and b are reduced as the algorithm
proceeds, the cofactors x and y grow in size. This makes the tuning of the chopping-point more
difficult. The current code chops off the most significant half of the inputs for the call to HGCD
in the first iteration, and the most significant two thirds for the remaining calls. This strategy
could surely be improved. Also the stop condition for the loop, where Lehmer’s algorithm is
invoked once the inputs are reduced below GCDEXT_DC_THRESHOLD, could maybe be improved
by taking into account the current size of the cofactors.

15.3.5 Jacobi Symbol

Jacobi symbol
(
a
b

)
Initially if either operand fits in a single limb, a reduction is done with either mpn_mod_1 or
mpn_modexact_1_odd, followed by the binary algorithm on a single limb. The binary algorithm
is well suited to a single limb, and the whole calculation in this case is quite efficient.

Chapter 15: Algorithms 109

For inputs larger than GCD_DC_THRESHOLD, mpz_jacobi, mpz_legendre and mpz_kronecker are
computed via the HGCD (Half GCD) function, as a generalization to Lehmer’s algorithm.

Most GCD algorithms reduce a and b by repeatatily computing the quotient q = ba/bc and
iteratively replacing

a, b = b, a− q ∗ b

Different algorithms use different methods for calculating q, but the core algorithm is the same
if we use Section 15.3.2 [Lehmer’s Algorithm], page 107, or Section 15.3.3 [Subquadratic GCD],
page 107.

At each step it is possible to compute if the reduction inverts the Jacobi symbol based on the
two least significant bits of a and b. For more details see “Efficient computation of the Jacobi
symbol” by Möller (see Appendix B [References], page 130).

A small set of bits is thus used to track state

• current sign of result (1 bit)

• two least significant bits of a and b (4 bits)

• a pointer to which input is currently the denominator (1 bit)

In all the routines sign changes for the result are accumulated using fast bit twiddling which
avoids conditional jumps.

The final result is calculated after verifying the inputs are coprime (GCD = 1) by raising (−1)e

Much of the HGCD code is shared directly with the HGCD implementations, such as the 2x2
matrix calculation, See Section 15.3.2 [Lehmer’s Algorithm], page 107, basecase and GCD_DC_

THRESHOLD.

The asymptotic running time is O(M(N) logN), where M(N) is the time for multiplying two
N -limb numbers.

15.4 Powering Algorithms

15.4.1 Normal Powering

Normal mpz or mpf powering uses a simple binary algorithm, successively squaring and then
multiplying by the base when a 1 bit is seen in the exponent, as per Knuth section 4.6.3. The
“left to right” variant described there is used rather than algorithm A, since it’s just as easy
and can be done with somewhat less temporary memory.

15.4.2 Modular Powering

Modular powering is implemented using a 2k-ary sliding window algorithm, as per “Handbook
of Applied Cryptography” algorithm 14.85 (see Appendix B [References], page 130). k is chosen
according to the size of the exponent. Larger exponents use larger values of k, the choice being
made to minimize the average number of multiplications that must supplement the squaring.

The modular multiplies and squarings use either a simple division or the REDC method by
Montgomery (see Appendix B [References], page 130). REDC is a little faster, essentially saving
N single limb divisions in a fashion similar to an exact remainder (see Section 15.2.6 [Exact
Remainder], page 105).

15.5 Root Extraction Algorithms

110 GNU MP 6.2.1

15.5.1 Square Root

Square roots are taken using the “Karatsuba Square Root” algorithm by Paul Zimmermann (see
Appendix B [References], page 130).

An input n is split into four parts of k bits each, so with b = 2k we have n = a3b
3+a2b

2+a1b+a0.
Part a3 must be “normalized” so that either the high or second highest bit is set. In GMP, k is
kept on a limb boundary and the input is left shifted (by an even number of bits) to normalize.

The square root of the high two parts is taken, by recursive application of the algorithm (bot-
toming out in a one-limb Newton’s method),

s′, r′ = sqrtrem (a3b+ a2)

This is an approximation to the desired root and is extended by a division to give s,r,

q, u = divrem (r′b+ a1, 2s
′)

s = s′b+ q

r = ub+ a0 − q2

The normalization requirement on a3 means at this point s is either correct or 1 too big. r is
negative in the latter case, so

if r < 0 then

r ← r + 2s− 1

s← s− 1

The algorithm is expressed in a divide and conquer form, but as noted in the paper it can also
be viewed as a discrete variant of Newton’s method, or as a variation on the schoolboy method
(no longer taught) for square roots two digits at a time.

If the remainder r is not required then usually only a few high limbs of r and u need to be cal-
culated to determine whether an adjustment to s is required. This optimization is not currently
implemented.

In the Karatsuba multiplication range this algorithm is O(3
2
M(N/2)), where M(n) is the time

to multiply two numbers of n limbs. In the FFT multiplication range this grows to a bound of
O(6M(N/2)). In practice a factor of about 1.5 to 1.8 is found in the Karatsuba and Toom-3
ranges, growing to 2 or 3 in the FFT range.

The algorithm does all its calculations in integers and the resulting mpn_sqrtrem is used for
both mpz_sqrt and mpf_sqrt. The extended precision given by mpf_sqrt_ui is obtained by
padding with zero limbs.

15.5.2 Nth Root

Integer Nth roots are taken using Newton’s method with the following iteration, where A is the
input and n is the root to be taken.

ai+1 =
1

n

(
A

an−1
i

+ (n− 1)ai

)

The initial approximation a1 is generated bitwise by successively powering a trial root with or
without new 1 bits, aiming to be just above the true root. The iteration converges quadratically
when started from a good approximation. When n is large more initial bits are needed to get
good convergence. The current implementation is not particularly well optimized.

Chapter 15: Algorithms 111

15.5.3 Perfect Square

A significant fraction of non-squares can be quickly identified by checking whether the input is
a quadratic residue modulo small integers.

mpz_perfect_square_p first tests the input mod 256, which means just examining the low
byte. Only 44 different values occur for squares mod 256, so 82.8% of inputs can be immediately
identified as non-squares.

On a 32-bit system similar tests are done mod 9, 5, 7, 13 and 17, for a total 99.25% of inputs
identified as non-squares. On a 64-bit system 97 is tested too, for a total 99.62%.

These moduli are chosen because they’re factors of 224 − 1 (or 248 − 1 for 64-bits), and such a
remainder can be quickly taken just using additions (see mpn_mod_34lsub1).

When nails are in use moduli are instead selected by the gen-psqr.c program and applied with
an mpn_mod_1. The same 224− 1 or 248− 1 could be done with nails using some extra bit shifts,
but this is not currently implemented.

In any case each modulus is applied to the mpn_mod_34lsub1 or mpn_mod_1 remainder and
a table lookup identifies non-squares. By using a “modexact” style calculation, and suitably
permuted tables, just one multiply each is required, see the code for details. Moduli are also
combined to save operations, so long as the lookup tables don’t become too big. gen-psqr.c

does all the pre-calculations.

A square root must still be taken for any value that passes these tests, to verify it’s really a
square and not one of the small fraction of non-squares that get through (i.e. a pseudo-square
to all the tested bases).

Clearly more residue tests could be done, mpz_perfect_square_p only uses a compact and
efficient set. Big inputs would probably benefit from more residue testing, small inputs might
be better off with less. The assumed distribution of squares versus non-squares in the input
would affect such considerations.

15.5.4 Perfect Power

Detecting perfect powers is required by some factorization algorithms. Currently mpz_perfect_

power_p is implemented using repeated Nth root extractions, though naturally only prime roots
need to be considered. (See Section 15.5.2 [Nth Root Algorithm], page 110.)

If a prime divisor p with multiplicity e can be found, then only roots which are divisors of e
need to be considered, much reducing the work necessary. To this end divisibility by a set of
small primes is checked.

15.6 Radix Conversion

Radix conversions are less important than other algorithms. A program dominated by conver-
sions should probably use a different data representation.

15.6.1 Binary to Radix

Conversions from binary to a power-of-2 radix use a simple and fast O(N) bit extraction algo-
rithm.

Conversions from binary to other radices use one of two algorithms. Sizes below GET_STR_

PRECOMPUTE_THRESHOLD use a basic O(N2) method. Repeated divisions by bn are made, where
b is the radix and n is the biggest power that fits in a limb. But instead of simply using the
remainder r from such divisions, an extra divide step is done to give a fractional limb representing
r/bn. The digits of r can then be extracted using multiplications by b rather than divisions.

112 GNU MP 6.2.1

Special case code is provided for decimal, allowing multiplications by 10 to optimize to shifts
and adds.

Above GET_STR_PRECOMPUTE_THRESHOLD a sub-quadratic algorithm is used. For an input t,
powers bn2

i

of the radix are calculated, until a power between t and
√
t is reached. t is then

divided by that largest power, giving a quotient which is the digits above that power, and a
remainder which is those below. These two parts are in turn divided by the second highest power,
and so on recursively. When a piece has been divided down to less than GET_STR_DC_THRESHOLD

limbs, the basecase algorithm described above is used.

The advantage of this algorithm is that big divisions can make use of the sub-quadratic divide
and conquer division (see Section 15.2.3 [Divide and Conquer Division], page 104), and big
divisions tend to have less overheads than lots of separate single limb divisions anyway. But in
any case the cost of calculating the powers bn2

i

must first be overcome.

GET_STR_PRECOMPUTE_THRESHOLD and GET_STR_DC_THRESHOLD represent the same basic thing,
the point where it becomes worth doing a big division to cut the input in half. GET_STR_

PRECOMPUTE_THRESHOLD includes the cost of calculating the radix power required, whereas GET_
STR_DC_THRESHOLD assumes that’s already available, which is the case when recursing.

Since the base case produces digits from least to most significant but they want to be stored
from most to least, it’s necessary to calculate in advance how many digits there will be, or at
least be sure not to underestimate that. For GMP the number of input bits is multiplied by
chars_per_bit_exactly from mp_bases, rounding up. The result is either correct or one too
big.

Examining some of the high bits of the input could increase the chance of getting the exact
number of digits, but an exact result every time would not be practical, since in general the
difference between numbers 100. . . and 99. . . is only in the last few bits and the work to identify
99. . . might well be almost as much as a full conversion.

The r/bn scheme described above for using multiplications to bring out digits might be useful
for more than a single limb. Some brief experiments with it on the base case when recursing
didn’t give a noticeable improvement, but perhaps that was only due to the implementation.
Something similar would work for the sub-quadratic divisions too, though there would be the
cost of calculating a bigger radix power.

Another possible improvement for the sub-quadratic part would be to arrange for radix powers
that balanced the sizes of quotient and remainder produced, i.e. the highest power would be an
bnk approximately equal to

√
t, not restricted to a 2i factor. That ought to smooth out a graph

of times against sizes, but may or may not be a net speedup.

15.6.2 Radix to Binary

This section needs to be rewritten, it currently describes the algorithms used before GMP 4.3.

Conversions from a power-of-2 radix into binary use a simple and fast O(N) bitwise concatena-
tion algorithm.

Conversions from other radices use one of two algorithms. Sizes below SET_STR_PRECOMPUTE_

THRESHOLD use a basic O(N2) method. Groups of n digits are converted to limbs, where n is
the biggest power of the base b which will fit in a limb, then those groups are accumulated into
the result by multiplying by bn and adding. This saves multi-precision operations, as per Knuth
section 4.4 part E (see Appendix B [References], page 130). Some special case code is provided
for decimal, giving the compiler a chance to optimize multiplications by 10.

Chapter 15: Algorithms 113

Above SET_STR_PRECOMPUTE_THRESHOLD a sub-quadratic algorithm is used. First groups of n
digits are converted into limbs. Then adjacent limbs are combined into limb pairs with xbn + y,
where x and y are the limbs. Adjacent limb pairs are combined into quads similarly with xb2n+y.
This continues until a single block remains, that being the result.

The advantage of this method is that the multiplications for each x are big blocks, allowing
Karatsuba and higher algorithms to be used. But the cost of calculating the powers bn2

i

must
be overcome. SET_STR_PRECOMPUTE_THRESHOLD usually ends up quite big, around 5000 digits,
and on some processors much bigger still.

SET_STR_PRECOMPUTE_THRESHOLD is based on the input digits (and tuned for decimal), though
it might be better based on a limb count, so as to be independent of the base. But that sort of
count isn’t used by the base case and so would need some sort of initial calculation or estimate.

The main reason SET_STR_PRECOMPUTE_THRESHOLD is so much bigger than the corresponding
GET_STR_PRECOMPUTE_THRESHOLD is that mpn_mul_1 is much faster than mpn_divrem_1 (often
by a factor of 5, or more).

15.7 Other Algorithms

15.7.1 Prime Testing

The primality testing in mpz_probab_prime_p (see Section 5.9 [Number Theoretic Functions],
page 37) first does some trial division by small factors and then uses the Miller-Rabin probabilis-
tic primality testing algorithm, as described in Knuth section 4.5.4 algorithm P (see Appendix B
[References], page 130).

For an odd input n, and with n = q2k + 1 where q is odd, this algorithm selects a random base
x and tests whether xq mod n is 1 or −1, or an xq2j mod n is 1, for 1 ≤ j ≤ k. If so then n is
probably prime, if not then n is definitely composite.

Any prime n will pass the test, but some composites do too. Such composites are known as
strong pseudoprimes to base x. No n is a strong pseudoprime to more than 1/4 of all bases
(see Knuth exercise 22), hence with x chosen at random there’s no more than a 1/4 chance a
“probable prime” will in fact be composite.

In fact strong pseudoprimes are quite rare, making the test much more powerful than this
analysis would suggest, but 1/4 is all that’s proven for an arbitrary n.

15.7.2 Factorial

Factorials are calculated by a combination of two algorithms. An idea is shared among them:
to compute the odd part of the factorial; a final step takes account of the power of 2 term, by
shifting.

For small n, the odd factor of n! is computed with the simple observation that it is equal to the
product of all positive odd numbers smaller than n times the odd factor of bn/2c!, where bxc
is the integer part of x, and so on recursively. The procedure can be best illustrated with an
example,

23! = (23.21.19.17.15.13.11.9.7.5.3)(11.9.7.5.3)(5.3)219

Current code collects all the factors in a single list, with a loop and no recursion, and compute
the product, with no special care for repeated chunks.

114 GNU MP 6.2.1

When n is larger, computation pass trough prime sieving. An helper function is used, as sug-
gested by Peter Luschny:

msf(n) =
n!

bn/2c!2 · 2k
=

n∏
p=3

pL(p,n)

Where p ranges on odd prime numbers. The exponent k is chosen to obtain an odd integer
number: k is the number of 1 bits in the binary representation of bn/2c. The function L(p, n)
can be defined as zero when p is composite, and, for any prime p, it is computed with:

L(p, n) =
∑
i>0

⌊
n

pi

⌋
mod 2 ≤ logp(n)

With this helper function, we are able to compute the odd part of n! using the recursion implied
by n! = bn/2c!2 ·msf(n) · 2k. The recursion stops using the small-n algorithm on some bn/2ic.

Both the above algorithms use binary splitting to compute the product of many small factors.
At first as many products as possible are accumulated in a single register, generating a list of
factors that fit in a machine word. This list is then split into halves, and the product is computed
recursively.

Such splitting is more efficient than repeated N×1 multiplies since it forms big multiplies, al-
lowing Karatsuba and higher algorithms to be used. And even below the Karatsuba threshold
a big block of work can be more efficient for the basecase algorithm.

15.7.3 Binomial Coefficients

Binomial coefficients
(n
k

)
are calculated by first arranging k ≤ n/2 using

(n
k

)
=
(

n
n−k

)
if neces-

sary, and then evaluating the following product simply from i = 2 to i = k.(
n

k

)
= (n− k + 1)

k∏
i=2

n− k + i

i

It’s easy to show that each denominator i will divide the product so far, so the exact division
algorithm is used (see Section 15.2.5 [Exact Division], page 104).

The numerators n− k + i and denominators i are first accumulated into as many fit a limb, to
save multi-precision operations, though for mpz_bin_ui this applies only to the divisors, since
n is an mpz_t and n− k + i in general won’t fit in a limb at all.

15.7.4 Fibonacci Numbers

The Fibonacci functions mpz_fib_ui and mpz_fib2_ui are designed for calculating isolated Fn

or Fn,Fn−1 values efficiently.

For small n, a table of single limb values in __gmp_fib_table is used. On a 32-bit limb this
goes up to F47, or on a 64-bit limb up to F93. For convenience the table starts at F−1.

Beyond the table, values are generated with a binary powering algorithm, calculating a pair Fn

and Fn−1 working from high to low across the bits of n. The formulas used are

F2k+1 = 4F 2
k − F 2

k−1 + 2(−1)k

F2k−1 = F 2
k + F 2

k−1

F2k = F2k+1 − F2k−1

At each step, k is the high b bits of n. If the next bit of n is 0 then F2k,F2k−1 is used, or if it’s
a 1 then F2k+1,F2k is used, and the process repeated until all bits of n are incorporated. Notice
these formulas require just two squares per bit of n.

Chapter 15: Algorithms 115

It’d be possible to handle the first few n above the single limb table with simple additions, using
the defining Fibonacci recurrence Fk+1 = Fk + Fk−1, but this is not done since it usually turns
out to be faster for only about 10 or 20 values of n, and including a block of code for just those
doesn’t seem worthwhile. If they really mattered it’d be better to extend the data table.

Using a table avoids lots of calculations on small numbers, and makes small n go fast. A bigger
table would make more small n go fast, it’s just a question of balancing size against desired
speed. For GMP the code is kept compact, with the emphasis primarily on a good powering
algorithm.

mpz_fib2_ui returns both Fn and Fn−1, but mpz_fib_ui is only interested in Fn. In this case
the last step of the algorithm can become one multiply instead of two squares. One of the
following two formulas is used, according as n is odd or even.

F2k = Fk(Fk + 2Fk−1)

F2k+1 = (2Fk + Fk−1)(2Fk − Fk−1) + 2(−1)k

F2k+1 here is the same as above, just rearranged to be a multiply. For interest, the 2(−1)k term
both here and above can be applied just to the low limb of the calculation, without a carry or
borrow into further limbs, which saves some code size. See comments with mpz_fib_ui and the
internal mpn_fib2_ui for how this is done.

15.7.5 Lucas Numbers

mpz_lucnum2_ui derives a pair of Lucas numbers from a pair of Fibonacci numbers with the
following simple formulas.

Lk = Fk + 2Fk−1

Lk−1 = 2Fk − Fk−1

mpz_lucnum_ui is only interested in Ln, and some work can be saved. Trailing zero bits on n
can be handled with a single square each.

L2k = L2
k − 2(−1)k

And the lowest 1 bit can be handled with one multiply of a pair of Fibonacci numbers, similar
to what mpz_fib_ui does.

L2k+1 = 5Fk−1(2Fk + Fk−1)− 4(−1)k

15.7.6 Random Numbers

For the urandomb functions, random numbers are generated simply by concatenating bits pro-
duced by the generator. As long as the generator has good randomness properties this will
produce well-distributed N bit numbers.

For the urandomm functions, random numbers in a range 0 ≤ R < N are generated by taking
values R of dlog2 Ne bits each until one satisfies R < N . This will normally require only one
or two attempts, but the attempts are limited in case the generator is somehow degenerate and
produces only 1 bits or similar.

The Mersenne Twister generator is by Matsumoto and Nishimura (see Appendix B [References],
page 130). It has a non-repeating period of 219937−1, which is a Mersenne prime, hence the name
of the generator. The state is 624 words of 32-bits each, which is iterated with one XOR and
shift for each 32-bit word generated, making the algorithm very fast. Randomness properties
are also very good and this is the default algorithm used by GMP.

Linear congruential generators are described in many text books, for instance Knuth volume
2 (see Appendix B [References], page 130). With a modulus M and parameters A and C, an

116 GNU MP 6.2.1

integer state S is iterated by the formula S ← AS +C mod M . At each step the new state is a
linear function of the previous, mod M , hence the name of the generator.

In GMP only moduli of the form 2N are supported, and the current implementation is not as well
optimized as it could be. Overheads are significant when N is small, and when N is large clearly
the multiply at each step will become slow. This is not a big concern, since the Mersenne Twister
generator is better in every respect and is therefore recommended for all normal applications.

For both generators the current state can be deduced by observing enough output and applying
some linear algebra (over GF(2) in the case of the Mersenne Twister). This generally means
raw output is unsuitable for cryptographic applications without further hashing or the like.

15.8 Assembly Coding

The assembly subroutines in GMP are the most significant source of speed at small to moderate
sizes. At larger sizes algorithm selection becomes more important, but of course speedups in
low level routines will still speed up everything proportionally.

Carry handling and widening multiplies that are important for GMP can’t be easily expressed
in C. GCC asm blocks help a lot and are provided in longlong.h, but hand coding low level
routines invariably offers a speedup over generic C by a factor of anything from 2 to 10.

15.8.1 Code Organisation

The various mpn subdirectories contain machine-dependent code, written in C or assembly. The
mpn/generic subdirectory contains default code, used when there’s no machine-specific version
of a particular file.

Each mpn subdirectory is for an ISA family. Generally 32-bit and 64-bit variants in a family
cannot share code and have separate directories. Within a family further subdirectories may
exist for CPU variants.

In each directory a nails subdirectory may exist, holding code with nails support for that CPU
variant. A NAILS_SUPPORT directive in each file indicates the nails values the code handles.
Nails code only exists where it’s faster, or promises to be faster, than plain code. There’s no
effort put into nails if they’re not going to enhance a given CPU.

15.8.2 Assembly Basics

mpn_addmul_1 and mpn_submul_1 are the most important routines for overall GMP performance.
All multiplications and divisions come down to repeated calls to these. mpn_add_n, mpn_sub_n,
mpn_lshift and mpn_rshift are next most important.

On some CPUs assembly versions of the internal functions mpn_mul_basecase and mpn_sqr_

basecase give significant speedups, mainly through avoiding function call overheads. They can
also potentially make better use of a wide superscalar processor, as can bigger primitives like
mpn_addmul_2 or mpn_addmul_4.

The restrictions on overlaps between sources and destinations (see Chapter 8 [Low-level Func-
tions], page 60) are designed to facilitate a variety of implementations. For example, knowing
mpn_add_n won’t have partly overlapping sources and destination means reading can be done far
ahead of writing on superscalar processors, and loops can be vectorized on a vector processor,
depending on the carry handling.

Chapter 15: Algorithms 117

15.8.3 Carry Propagation

The problem that presents most challenges in GMP is propagating carries from one limb to the
next. In functions like mpn_addmul_1 and mpn_add_n, carries are the only dependencies between
limb operations.

On processors with carry flags, a straightforward CISC style adc is generally best. AMD K6
mpn_addmul_1 however is an example of an unusual set of circumstances where a branch works
out better.

On RISC processors generally an add and compare for overflow is used. This sort of thing can
be seen in mpn/generic/aors_n.c. Some carry propagation schemes require 4 instructions,
meaning at least 4 cycles per limb, but other schemes may use just 1 or 2. On wide superscalar
processors performance may be completely determined by the number of dependent instructions
between carry-in and carry-out for each limb.

On vector processors good use can be made of the fact that a carry bit only very rarely propagates
more than one limb. When adding a single bit to a limb, there’s only a carry out if that limb was
0xFF...FF which on random data will be only 1 in 2mp bits per limb. mpn/cray/add_n.c is
an example of this, it adds all limbs in parallel, adds one set of carry bits in parallel and then
only rarely needs to fall through to a loop propagating further carries.

On the x86s, GCC (as of version 2.95.2) doesn’t generate particularly good code for the RISC
style idioms that are necessary to handle carry bits in C. Often conditional jumps are generated
where adc or sbb forms would be better. And so unfortunately almost any loop involving carry
bits needs to be coded in assembly for best results.

15.8.4 Cache Handling

GMP aims to perform well both on operands that fit entirely in L1 cache and those which don’t.

Basic routines like mpn_add_n or mpn_lshift are often used on large operands, so L2 and main
memory performance is important for them. mpn_mul_1 and mpn_addmul_1 are mostly used
for multiply and square basecases, so L1 performance matters most for them, unless assembly
versions of mpn_mul_basecase and mpn_sqr_basecase exist, in which case the remaining uses
are mostly for larger operands.

For L2 or main memory operands, memory access times will almost certainly be more than
the calculation time. The aim therefore is to maximize memory throughput, by starting a load
of the next cache line while processing the contents of the previous one. Clearly this is only
possible if the chip has a lock-up free cache or some sort of prefetch instruction. Most current
chips have both these features.

Prefetching sources combines well with loop unrolling, since a prefetch can be initiated once per
unrolled loop (or more than once if the loop covers more than one cache line).

On CPUs without write-allocate caches, prefetching destinations will ensure individual stores
don’t go further down the cache hierarchy, limiting bandwidth. Of course for calculations which
are slow anyway, like mpn_divrem_1, write-throughs might be fine.

The distance ahead to prefetch will be determined by memory latency versus throughput. The
aim of course is to have data arriving continuously, at peak throughput. Some CPUs have limits
on the number of fetches or prefetches in progress.

If a special prefetch instruction doesn’t exist then a plain load can be used, but in that case care
must be taken not to attempt to read past the end of an operand, since that might produce a
segmentation violation.

118 GNU MP 6.2.1

Some CPUs or systems have hardware that detects sequential memory accesses and initiates
suitable cache movements automatically, making life easy.

15.8.5 Functional Units

When choosing an approach for an assembly loop, consideration is given to what operations
can execute simultaneously and what throughput can thereby be achieved. In some cases an
algorithm can be tweaked to accommodate available resources.

Loop control will generally require a counter and pointer updates, costing as much as 5 in-
structions, plus any delays a branch introduces. CPU addressing modes might reduce pointer
updates, perhaps by allowing just one updating pointer and others expressed as offsets from it,
or on CISC chips with all addressing done with the loop counter as a scaled index.

The final loop control cost can be amortised by processing several limbs in each iteration (see
Section 15.8.9 [Assembly Loop Unrolling], page 120). This at least ensures loop control isn’t a
big fraction the work done.

Memory throughput is always a limit. If perhaps only one load or one store can be done per
cycle then 3 cycles/limb will the top speed for “binary” operations like mpn_add_n, and any
code achieving that is optimal.

Integer resources can be freed up by having the loop counter in a float register, or by pressing
the float units into use for some multiplying, perhaps doing every second limb on the float side
(see Section 15.8.6 [Assembly Floating Point], page 118).

Float resources can be freed up by doing carry propagation on the integer side, or even by doing
integer to float conversions in integers using bit twiddling.

15.8.6 Floating Point

Floating point arithmetic is used in GMP for multiplications on CPUs with poor integer multi-
pliers. It’s mostly useful for mpn_mul_1, mpn_addmul_1 and mpn_submul_1 on 64-bit machines,
and mpn_mul_basecase on both 32-bit and 64-bit machines.

With IEEE 53-bit double precision floats, integer multiplications producing up to 53 bits will give
exact results. Breaking a 64×64 multiplication into eight 16×32 → 48 bit pieces is convenient.
With some care though six 21×32→ 53 bit products can be used, if one of the lower two 21-bit
pieces also uses the sign bit.

For the mpn_mul_1 family of functions on a 64-bit machine, the invariant single limb is split
at the start, into 3 or 4 pieces. Inside the loop, the bignum operand is split into 32-bit pieces.
Fast conversion of these unsigned 32-bit pieces to floating point is highly machine-dependent. In
some cases, reading the data into the integer unit, zero-extending to 64-bits, then transferring
to the floating point unit back via memory is the only option.

Converting partial products back to 64-bit limbs is usually best done as a signed conversion.
Since all values are smaller than 253, signed and unsigned are the same, but most processors
lack unsigned conversions.

Here is a diagram showing 16×32 bit products for an mpn_mul_1 or mpn_addmul_1 with a 64-bit
limb. The single limb operand V is split into four 16-bit parts. The multi-limb operand U is
split in the loop into two 32-bit parts.

Chapter 15: Algorithms 119

v48 v32 v16 v00 V Operand

× u32 u00 U Operand (one limb)

u00× v00 p00 48-bit products

u00× v16 p16

u00× v32 p32

u00× v48 p48

u32× v00 r32

u32× v16 r48

u32× v32 r64

u32× v48 r80

p32 and r32 can be summed using floating-point addition, and likewise p48 and r48. p00 and
p16 can be summed with r64 and r80 from the previous iteration.

For each loop then, four 49-bit quantities are transferred to the integer unit, aligned as follows,

64 bits 64 bits

p00 + r64′ i00

p16 + r80′ i16

p32 + r32 i32

p48 + r48 i48

The challenge then is to sum these efficiently and add in a carry limb, generating a low 64-bit
result limb and a high 33-bit carry limb (i48 extends 33 bits into the high half).

15.8.7 SIMD Instructions

The single-instruction multiple-data support in current microprocessors is aimed at signal pro-
cessing algorithms where each data point can be treated more or less independently. There’s
generally not much support for propagating the sort of carries that arise in GMP.

SIMD multiplications of say four 16×16 bit multiplies only do as much work as one 32×32 from
GMP’s point of view, and need some shifts and adds besides. But of course if say the SIMD
form is fully pipelined and uses less instruction decoding then it may still be worthwhile.

On the x86 chips, MMX has so far found a use in mpn_rshift and mpn_lshift, and is used in a
special case for 16-bit multipliers in the P55 mpn_mul_1. SSE2 is used for Pentium 4 mpn_mul_1,
mpn_addmul_1, and mpn_submul_1.

15.8.8 Software Pipelining

Software pipelining consists of scheduling instructions around the branch point in a loop. For
example a loop might issue a load not for use in the present iteration but the next, thereby
allowing extra cycles for the data to arrive from memory.

Naturally this is wanted only when doing things like loads or multiplies that take several cycles
to complete, and only where a CPU has multiple functional units so that other work can be
done in the meantime.

A pipeline with several stages will have a data value in progress at each stage and each loop
iteration moves them along one stage. This is like juggling.

120 GNU MP 6.2.1

If the latency of some instruction is greater than the loop time then it will be necessary to unroll,
so one register has a result ready to use while another (or multiple others) are still in progress.
(see Section 15.8.9 [Assembly Loop Unrolling], page 120).

15.8.9 Loop Unrolling

Loop unrolling consists of replicating code so that several limbs are processed in each loop.
At a minimum this reduces loop overheads by a corresponding factor, but it can also allow
better register usage, for example alternately using one register combination and then another.
Judicious use of m4 macros can help avoid lots of duplication in the source code.

Any amount of unrolling can be handled with a loop counter that’s decremented by N each
time, stopping when the remaining count is less than the further N the loop will process. Or by
subtracting N at the start, the termination condition becomes when the counter C is less than
0 (and the count of remaining limbs is C +N).

Alternately for a power of 2 unroll the loop count and remainder can be established with a shift
and mask. This is convenient if also making a computed jump into the middle of a large loop.

The limbs not a multiple of the unrolling can be handled in various ways, for example

• A simple loop at the end (or the start) to process the excess. Care will be wanted that it
isn’t too much slower than the unrolled part.

• A set of binary tests, for example after an 8-limb unrolling, test for 4 more limbs to process,
then a further 2 more or not, and finally 1 more or not. This will probably take more code
space than a simple loop.

• A switch statement, providing separate code for each possible excess, for example an 8-limb
unrolling would have separate code for 0 remaining, 1 remaining, etc, up to 7 remaining.
This might take a lot of code, but may be the best way to optimize all cases in combination
with a deep pipelined loop.

• A computed jump into the middle of the loop, thus making the first iteration handle the
excess. This should make times smoothly increase with size, which is attractive, but setups
for the jump and adjustments for pointers can be tricky and could become quite difficult in
combination with deep pipelining.

15.8.10 Writing Guide

This is a guide to writing software pipelined loops for processing limb vectors in assembly.

First determine the algorithm and which instructions are needed. Code it without unrolling or
scheduling, to make sure it works. On a 3-operand CPU try to write each new value to a new
register, this will greatly simplify later steps.

Then note for each instruction the functional unit and/or issue port requirements. If an instruc-
tion can use either of two units, like U0 or U1 then make a category “U0/U1”. Count the total
using each unit (or combined unit), and count all instructions.

Figure out from those counts the best possible loop time. The goal will be to find a perfect
schedule where instruction latencies are completely hidden. The total instruction count might
be the limiting factor, or perhaps a particular functional unit. It might be possible to tweak the
instructions to help the limiting factor.

Suppose the loop time is N , then make N issue buckets, with the final loop branch at the end of
the last. Now fill the buckets with dummy instructions using the functional units desired. Run
this to make sure the intended speed is reached.

121

Now replace the dummy instructions with the real instructions from the slow but correct loop
you started with. The first will typically be a load instruction. Then the instruction using that
value is placed in a bucket an appropriate distance down. Run the loop again, to check it still
runs at target speed.

Keep placing instructions, frequently measuring the loop. After a few you will need to wrap
around from the last bucket back to the top of the loop. If you used the new-register for new-
value strategy above then there will be no register conflicts. If not then take care not to clobber
something already in use. Changing registers at this time is very error prone.

The loop will overlap two or more of the original loop iterations, and the computation of one
vector element result will be started in one iteration of the new loop, and completed one or
several iterations later.

The final step is to create feed-in and wind-down code for the loop. A good way to do this is
to make a copy (or copies) of the loop at the start and delete those instructions which don’t
have valid antecedents, and at the end replicate and delete those whose results are unwanted
(including any further loads).

The loop will have a minimum number of limbs loaded and processed, so the feed-in code must
test if the request size is smaller and skip either to a suitable part of the wind-down or to special
code for small sizes.

122 GNU MP 6.2.1

16 Internals

This chapter is provided only for informational purposes and the various internals described
here may change in future GMP releases. Applications expecting to be compatible with future
releases should use only the documented interfaces described in previous chapters.

16.1 Integer Internals

mpz_t variables represent integers using sign and magnitude, in space dynamically allocated and
reallocated. The fields are as follows.

_mp_size The number of limbs, or the negative of that when representing a negative inte-
ger. Zero is represented by _mp_size set to zero, in which case the _mp_d data is
undefined.

_mp_d A pointer to an array of limbs which is the magnitude. These are stored “little
endian” as per the mpn functions, so _mp_d[0] is the least significant limb and _mp_

d[ABS(_mp_size)-1] is the most significant. Whenever _mp_size is non-zero, the
most significant limb is non-zero.

Currently there’s always at least one readable limb, so for instance mpz_get_ui can
fetch _mp_d[0] unconditionally (though its value is undefined if _mp_size is zero).

_mp_alloc

_mp_alloc is the number of limbs currently allocated at _mp_d, and normally _mp_

alloc >= ABS(_mp_size). When an mpz routine is about to (or might be about to)
increase _mp_size, it checks _mp_alloc to see whether there’s enough space, and
reallocates if not. MPZ_REALLOC is generally used for this.

mpz_t variables initialised with the mpz_roinit_n function or the MPZ_ROINIT_N

macro have _mp_alloc = 0 but can have a non-zero _mp_size. They can only be
used as read-only constants. See Section 5.16 [Integer Special Functions], page 44,
for details.

The various bitwise logical functions like mpz_and behave as if negative values were twos com-
plement. But sign and magnitude is always used internally, and necessary adjustments are made
during the calculations. Sometimes this isn’t pretty, but sign and magnitude are best for other
routines.

Some internal temporary variables are setup with MPZ_TMP_INIT and these have _mp_d space
obtained from TMP_ALLOC rather than the memory allocation functions. Care is taken to ensure
that these are big enough that no reallocation is necessary (since it would have unpredictable
consequences).

_mp_size and _mp_alloc are int, although mp_size_t is usually a long. This is done to make
the fields just 32 bits on some 64 bits systems, thereby saving a few bytes of data space but still
providing plenty of range.

16.2 Rational Internals

mpq_t variables represent rationals using an mpz_t numerator and denominator (see Section 16.1
[Integer Internals], page 122).

The canonical form adopted is denominator positive (and non-zero), no common factors between
numerator and denominator, and zero uniquely represented as 0/1.

It’s believed that casting out common factors at each stage of a calculation is best in general. A
GCD is an O(N2) operation so it’s better to do a few small ones immediately than to delay and

Chapter 16: Internals 123

have to do a big one later. Knowing the numerator and denominator have no common factors
can be used for example in mpq_mul to make only two cross GCDs necessary, not four.

This general approach to common factors is badly sub-optimal in the presence of simple factor-
izations or little prospect for cancellation, but GMP has no way to know when this will occur.
As per Section 3.11 [Efficiency], page 22, that’s left to applications. The mpq_t framework might
still suit, with mpq_numref and mpq_denref for direct access to the numerator and denominator,
or of course mpz_t variables can be used directly.

16.3 Float Internals

Efficient calculation is the primary aim of GMP floats and the use of whole limbs and simple
rounding facilitates this.

mpf_t floats have a variable precision mantissa and a single machine word signed exponent. The
mantissa is represented using sign and magnitude.

most significant limb least significant limb

mp exp → mp d

· ← radix point
← mp size →

The fields are as follows.

_mp_size The number of limbs currently in use, or the negative of that when representing a
negative value. Zero is represented by _mp_size and _mp_exp both set to zero, and
in that case the _mp_d data is unused. (In the future _mp_exp might be undefined
when representing zero.)

_mp_prec The precision of the mantissa, in limbs. In any calculation the aim is to produce
_mp_prec limbs of result (the most significant being non-zero).

_mp_d A pointer to the array of limbs which is the absolute value of the mantissa. These are
stored “little endian” as per the mpn functions, so _mp_d[0] is the least significant
limb and _mp_d[ABS(_mp_size)-1] the most significant.

The most significant limb is always non-zero, but there are no other restrictions on
its value, in particular the highest 1 bit can be anywhere within the limb.

_mp_prec+1 limbs are allocated to _mp_d, the extra limb being for convenience (see
below). There are no reallocations during a calculation, only in a change of precision
with mpf_set_prec.

_mp_exp The exponent, in limbs, determining the location of the implied radix point. Zero
means the radix point is just above the most significant limb. Positive values mean
a radix point offset towards the lower limbs and hence a value ≥ 1, as for example
in the diagram above. Negative exponents mean a radix point further above the
highest limb.

Naturally the exponent can be any value, it doesn’t have to fall within the limbs as
the diagram shows, it can be a long way above or a long way below. Limbs other
than those included in the {_mp_d,_mp_size} data are treated as zero.

The _mp_size and _mp_prec fields are int, although the mp_size_t type is usually a long.
The _mp_exp field is usually long. This is done to make some fields just 32 bits on some 64 bits
systems, thereby saving a few bytes of data space but still providing plenty of precision and a
very large range.

124 GNU MP 6.2.1

The following various points should be noted.

Low Zeros The least significant limbs _mp_d[0] etc can be zero, though such low zeros can
always be ignored. Routines likely to produce low zeros check and avoid them to
save time in subsequent calculations, but for most routines they’re quite unlikely
and aren’t checked.

Mantissa Size Range
The _mp_size count of limbs in use can be less than _mp_prec if the value can be
represented in less. This means low precision values or small integers stored in a
high precision mpf_t can still be operated on efficiently.

_mp_size can also be greater than _mp_prec. Firstly a value is allowed to use all
of the _mp_prec+1 limbs available at _mp_d, and secondly when mpf_set_prec_raw

lowers _mp_prec it leaves _mp_size unchanged and so the size can be arbitrarily
bigger than _mp_prec.

Rounding All rounding is done on limb boundaries. Calculating _mp_prec limbs with the high
non-zero will ensure the application requested minimum precision is obtained.

The use of simple “trunc” rounding towards zero is efficient, since there’s no need
to examine extra limbs and increment or decrement.

Bit Shifts Since the exponent is in limbs, there are no bit shifts in basic operations like mpf_

add and mpf_mul. When differing exponents are encountered all that’s needed is to
adjust pointers to line up the relevant limbs.

Of course mpf_mul_2exp and mpf_div_2exp will require bit shifts, but the choice
is between an exponent in limbs which requires shifts there, or one in bits which
requires them almost everywhere else.

Use of _mp_prec+1 Limbs
The extra limb on _mp_d (_mp_prec+1 rather than just _mp_prec) helps when an
mpf routine might get a carry from its operation. mpf_add for instance will do an
mpn_add of _mp_prec limbs. If there’s no carry then that’s the result, but if there is a
carry then it’s stored in the extra limb of space and _mp_size becomes _mp_prec+1.

Whenever _mp_prec+1 limbs are held in a variable, the low limb is not needed for
the intended precision, only the _mp_prec high limbs. But zeroing it out or moving
the rest down is unnecessary. Subsequent routines reading the value will simply take
the high limbs they need, and this will be _mp_prec if their target has that same
precision. This is no more than a pointer adjustment, and must be checked anyway
since the destination precision can be different from the sources.

Copy functions like mpf_set will retain a full _mp_prec+1 limbs if available. This
ensures that a variable which has _mp_size equal to _mp_prec+1 will get its full
exact value copied. Strictly speaking this is unnecessary since only _mp_prec limbs
are needed for the application’s requested precision, but it’s considered that an mpf_

set from one variable into another of the same precision ought to produce an exact
copy.

Application Precisions
__GMPF_BITS_TO_PREC converts an application requested precision to an _mp_prec.
The value in bits is rounded up to a whole limb then an extra limb is added since
the most significant limb of _mp_d is only non-zero and therefore might contain only
one bit.

__GMPF_PREC_TO_BITS does the reverse conversion, and removes the extra limb from
_mp_prec before converting to bits. The net effect of reading back with mpf_get_

prec is simply the precision rounded up to a multiple of mp_bits_per_limb.

Chapter 16: Internals 125

Note that the extra limb added here for the high only being non-zero is in addition
to the extra limb allocated to _mp_d. For example with a 32-bit limb, an application
request for 250 bits will be rounded up to 8 limbs, then an extra added for the high
being only non-zero, giving an _mp_prec of 9. _mp_d then gets 10 limbs allocated.
Reading back with mpf_get_prec will take _mp_prec subtract 1 limb and multiply
by 32, giving 256 bits.

Strictly speaking, the fact the high limb has at least one bit means that a float with,
say, 3 limbs of 32-bits each will be holding at least 65 bits, but for the purposes of
mpf_t it’s considered simply to be 64 bits, a nice multiple of the limb size.

16.4 Raw Output Internals

mpz_out_raw uses the following format.

size data bytes

The size is 4 bytes written most significant byte first, being the number of subsequent data
bytes, or the twos complement negative of that when a negative integer is represented. The
data bytes are the absolute value of the integer, written most significant byte first.

The most significant data byte is always non-zero, so the output is the same on all systems,
irrespective of limb size.

In GMP 1, leading zero bytes were written to pad the data bytes to a multiple of the limb size.
mpz_inp_raw will still accept this, for compatibility.

The use of “big endian” for both the size and data fields is deliberate, it makes the data easy to
read in a hex dump of a file. Unfortunately it also means that the limb data must be reversed
when reading or writing, so neither a big endian nor little endian system can just read and write
_mp_d.

16.5 C++ Interface Internals

A system of expression templates is used to ensure something like a=b+c turns into a simple call
to mpz_add etc. For mpf_class the scheme also ensures the precision of the final destination
is used for any temporaries within a statement like f=w*x+y*z. These are important features
which a naive implementation cannot provide.

A simplified description of the scheme follows. The true scheme is complicated by the fact that
expressions have different return types. For detailed information, refer to the source code.

To perform an operation, say, addition, we first define a “function object” evaluating it,

struct __gmp_binary_plus

{

static void eval(mpf_t f, const mpf_t g, const mpf_t h)

{

mpf_add(f, g, h);

}

};

And an “additive expression” object,

__gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >

operator+(const mpf_class &f, const mpf_class &g)

{

126 GNU MP 6.2.1

return __gmp_expr

<__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >(f, g);

}

The seemingly redundant __gmp_expr<__gmp_binary_expr<...>> is used to encapsulate any
possible kind of expression into a single template type. In fact even mpf_class etc are typedef
specializations of __gmp_expr.

Next we define assignment of __gmp_expr to mpf_class.

template <class T>

mpf_class & mpf_class::operator=(const __gmp_expr<T> &expr)

{

expr.eval(this->get_mpf_t(), this->precision());

return *this;

}

template <class Op>

void __gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, Op> >::eval

(mpf_t f, mp_bitcnt_t precision)

{

Op::eval(f, expr.val1.get_mpf_t(), expr.val2.get_mpf_t());

}

where expr.val1 and expr.val2 are references to the expression’s operands (here expr is the
__gmp_binary_expr stored within the __gmp_expr).

This way, the expression is actually evaluated only at the time of assignment, when the required
precision (that of f) is known. Furthermore the target mpf_t is now available, thus we can call
mpf_add directly with f as the output argument.

Compound expressions are handled by defining operators taking subexpressions as their argu-
ments, like this:

template <class T, class U>

__gmp_expr

<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >

operator+(const __gmp_expr<T> &expr1, const __gmp_expr<U> &expr2)

{

return __gmp_expr

<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >

(expr1, expr2);

}

And the corresponding specializations of __gmp_expr::eval:

template <class T, class U, class Op>

void __gmp_expr

<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, Op> >::eval

(mpf_t f, mp_bitcnt_t precision)

{

// declare two temporaries

mpf_class temp1(expr.val1, precision), temp2(expr.val2, precision);

Op::eval(f, temp1.get_mpf_t(), temp2.get_mpf_t());

}

127

The expression is thus recursively evaluated to any level of complexity and all subexpressions
are evaluated to the precision of f.

128 GNU MP 6.2.1

Appendix A Contributors

Torbjörn Granlund wrote the original GMP library and is still the main developer. Code not
explicitly attributed to others, was contributed by Torbjörn. Several other individuals and
organizations have contributed GMP. Here is a list in chronological order on first contribution:

Gunnar Sjödin and Hans Riesel helped with mathematical problems in early versions of the
library.

Richard Stallman helped with the interface design and revised the first version of this manual.

Brian Beuning and Doug Lea helped with testing of early versions of the library and made
creative suggestions.

John Amanatides of York University in Canada contributed the function mpz_probab_prime_p.

Paul Zimmermann wrote the REDC-based mpz powm code, the Schönhage-Strassen FFT mul-
tiply code, and the Karatsuba square root code. He also improved the Toom3 code for GMP
4.2. Paul sparked the development of GMP 2, with his comparisons between bignum packages.
The ECMNET project Paul is organizing was a driving force behind many of the optimizations
in GMP 3. Paul also wrote the new GMP 4.3 nth root code (with Torbjörn).

Ken Weber (Kent State University, Universidade Federal do Rio Grande do Sul) contributed now
defunct versions of mpz_gcd, mpz_divexact, mpn_gcd, and mpn_bdivmod, partially supported by
CNPq (Brazil) grant 301314194-2.

Per Bothner of Cygnus Support helped to set up GMP to use Cygnus’ configure. He has also
made valuable suggestions and tested numerous intermediary releases.

Joachim Hollman was involved in the design of the mpf interface, and in the mpz design revisions
for version 2.

Bennet Yee contributed the initial versions of mpz_jacobi and mpz_legendre.

Andreas Schwab contributed the files mpn/m68k/lshift.S and mpn/m68k/rshift.S (now in
.asm form).

Robert Harley of Inria, France and David Seal of ARM, England, suggested clever improve-
ments for population count. Robert also wrote highly optimized Karatsuba and 3-way Toom
multiplication functions for GMP 3, and contributed the ARM assembly code.

Torsten Ekedahl of the Mathematical department of Stockholm University provided significant
inspiration during several phases of the GMP development. His mathematical expertise helped
improve several algorithms.

Linus Nordberg wrote the new configure system based on autoconf and implemented the new
random functions.

Kevin Ryde worked on a large number of things: optimized x86 code, m4 asm macros, parameter
tuning, speed measuring, the configure system, function inlining, divisibility tests, bit scanning,
Jacobi symbols, Fibonacci and Lucas number functions, printf and scanf functions, perl interface,
demo expression parser, the algorithms chapter in the manual, gmpasm-mode.el, and various
miscellaneous improvements elsewhere.

Kent Boortz made the Mac OS 9 port.

Steve Root helped write the optimized alpha 21264 assembly code.

Gerardo Ballabio wrote the gmpxx.h C++ class interface and the C++ istream input routines.

Appendix A: Contributors 129

Jason Moxham rewrote mpz_fac_ui.

Pedro Gimeno implemented the Mersenne Twister and made other random number improve-
ments.

Niels Möller wrote the sub-quadratic GCD, extended GCD and jacobi code, the quadratic
Hensel division code, and (with Torbjörn) the new divide and conquer division code for GMP
4.3. Niels also helped implement the new Toom multiply code for GMP 4.3 and implemented
helper functions to simplify Toom evaluations for GMP 5.0. He wrote the original version of
mpn mulmod bnm1, and he is the main author of the mini-gmp package used for gmp boot-
strapping.

Alberto Zanoni and Marco Bodrato suggested the unbalanced multiply strategy, and found the
optimal strategies for evaluation and interpolation in Toom multiplication.

Marco Bodrato helped implement the new Toom multiply code for GMP 4.3 and implemented
most of the new Toom multiply and squaring code for 5.0. He is the main author of the current
mpn mulmod bnm1, mpn mullo n, and mpn sqrlo. Marco also wrote the functions mpn invert
and mpn invertappr, and improved the speed of integer root extraction. He is the author of
mini-mpq, an additional layer to mini-gmp; of most of the combinatorial functions and the
BPSW primality testing implementation, for both the main library and the mini-gmp package.

David Harvey suggested the internal function mpn_bdiv_dbm1, implementing division relevant to
Toom multiplication. He also worked on fast assembly sequences, in particular on a fast AMD64
mpn_mul_basecase. He wrote the internal middle product functions mpn_mulmid_basecase,
mpn_toom42_mulmid, mpn_mulmid_n and related helper routines.

Martin Boij wrote mpn_perfect_power_p.

Marc Glisse improved gmpxx.h: use fewer temporaries (faster), specializations of numeric_

limits and common_type, C++11 features (move constructors, explicit bool conversion, UDL),
make the conversion from mpq_class to mpz_class explicit, optimize operations where one
argument is a small compile-time constant, replace some heap allocations by stack allocations.
He also fixed the eofbit handling of C++ streams, and removed one division from mpq/aors.c.

David S Miller wrote assembly code for SPARC T3 and T4.

Mark Sofroniou cleaned up the types of mul fft.c, letting it work for huge operands.

Ulrich Weigand ported GMP to the powerpc64le ABI.

(This list is chronological, not ordered after significance. If you have contributed to GMP but
are not listed above, please tell gmp-devel@gmplib.org about the omission!)

The development of floating point functions of GNU MP 2, were supported in part by the
ESPRIT-BRA (Basic Research Activities) 6846 project POSSO (POlynomial System SOlving).

The development of GMP 2, 3, and 4.0 was supported in part by the IDA Center for Computing
Sciences.

The development of GMP 4.3, 5.0, and 5.1 was supported in part by the Swedish Foundation
for Strategic Research.

Thanks go to Hans Thorsen for donating an SGI system for the GMP test system environment.

mailto:gmp-devel@gmplib.org

130 GNU MP 6.2.1

Appendix B References

B.1 Books

• Jonathan M. Borwein and Peter B. Borwein, “Pi and the AGM: A Study in Analytic
Number Theory and Computational Complexity”, Wiley, 1998.

• Richard Crandall and Carl Pomerance, “Prime Numbers: A Computational Perspective”,
2nd edition, Springer-Verlag, 2005.
https://www.math.dartmouth.edu/~carlp/

• Henri Cohen, “A Course in Computational Algebraic Number Theory”, Graduate Texts in
Mathematics number 138, Springer-Verlag, 1993.
https://www.math.u-bordeaux.fr/~cohen/

• Donald E. Knuth, “The Art of Computer Programming”, volume 2, “Seminumerical Algo-
rithms”, 3rd edition, Addison-Wesley, 1998.
https://www-cs-faculty.stanford.edu/~knuth/taocp.html

• John D. Lipson, “Elements of Algebra and Algebraic Computing”, The Benjamin Cummings
Publishing Company Inc, 1981.

• Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, “Handbook of Applied
Cryptography”, http://www.cacr.math.uwaterloo.ca/hac/

• Richard M. Stallman and the GCC Developer Community, “Using the GNU Compiler
Collection”, Free Software Foundation, 2008, available online https://gcc.gnu.org/

onlinedocs/, and in the GCC package https://ftp.gnu.org/gnu/gcc/

B.2 Papers

• Yves Bertot, Nicolas Magaud and Paul Zimmermann, “A Proof of GMP Square Root”,
Journal of Automated Reasoning, volume 29, 2002, pp. 225-252. Also available online as
INRIA Research Report 4475, June 2002, https://hal.inria.fr/docs/00/07/21/13/
PDF/RR-4475.pdf

• Christoph Burnikel and Joachim Ziegler, “Fast Recursive Division”, Max-Planck-Institut
fuer Informatik Research Report MPI-I-98-1-022,
https://www.mpi-inf.mpg.de/~ziegler/TechRep.ps.gz

• Torbjörn Granlund and Peter L. Montgomery, “Division by Invariant Integers using Multi-
plication”, in Proceedings of the SIGPLAN PLDI’94 Conference, June 1994. Also available
https://gmplib.org/~tege/divcnst-pldi94.pdf.

• Niels Möller and Torbjörn Granlund, “Improved division by invariant integers”, IEEE
Transactions on Computers, 11 June 2010. https://gmplib.org/~tege/division-paper.
pdf

• Torbjörn Granlund and Niels Möller, “Division of integers large and small”, to appear.

• Tudor Jebelean, “An algorithm for exact division”, Journal of Symbolic Computation, vol-
ume 15, 1993, pp. 169-180. Research report version available
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-35.ps.gz

• Tudor Jebelean, “Exact Division with Karatsuba Complexity - Extended Abstract”, RISC-
Linz technical report 96-31,
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-31.ps.gz

• Tudor Jebelean, “Practical Integer Division with Karatsuba Complexity”, ISSAC 97, pp.
339-341. Technical report available
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-29.ps.gz

https://www.math.dartmouth.edu/~carlp/
https://www.math.u-bordeaux.fr/~cohen/
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www.cacr.math.uwaterloo.ca/hac/
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://ftp.gnu.org/gnu/gcc/
https://hal.inria.fr/docs/00/07/21/13/PDF/RR-4475.pdf
https://hal.inria.fr/docs/00/07/21/13/PDF/RR-4475.pdf
https://www.mpi-inf.mpg.de/~ziegler/TechRep.ps.gz
https://gmplib.org/~tege/divcnst-pldi94.pdf
https://gmplib.org/~tege/division-paper.pdf
https://gmplib.org/~tege/division-paper.pdf
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-35.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-31.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-29.ps.gz

Appendix B: References 131

• Tudor Jebelean, “A Generalization of the Binary GCD Algorithm”, ISSAC 93, pp. 111-116.
Technical report version available
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-01.ps.gz

• Tudor Jebelean, “A Double-Digit Lehmer-Euclid Algorithm for Finding the GCD of Long
Integers”, Journal of Symbolic Computation, volume 19, 1995, pp. 145-157. Technical
report version also available
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-69.ps.gz

• Werner Krandick and Tudor Jebelean, “Bidirectional Exact Integer Division”, Journal of
Symbolic Computation, volume 21, 1996, pp. 441-455. Early technical report version also
available ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz

• Makoto Matsumoto and Takuji Nishimura, “Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator”, ACM Transactions on Mod-
elling and Computer Simulation, volume 8, January 1998, pp. 3-30. Available online
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf

• R. Moenck and A. Borodin, “Fast Modular Transforms via Division”, Proceedings of the
13th Annual IEEE Symposium on Switching and Automata Theory, October 1972, pp. 90-
96. Reprinted as “Fast Modular Transforms”, Journal of Computer and System Sciences,
volume 8, number 3, June 1974, pp. 366-386.

• Niels Möller, “On Schönhage’s algorithm and subquadratic integer GCD computation”, in
Mathematics of Computation, volume 77, January 2008, pp. 589-607, https://www.ams.
org/journals/mcom/2008-77-261/S0025-5718-07-02017-0/home.html

• Peter L. Montgomery, “Modular Multiplication Without Trial Division”, in Mathematics
of Computation, volume 44, number 170, April 1985.

• Arnold Schönhage and Volker Strassen, “Schnelle Multiplikation grosser Zahlen”, Comput-
ing 7, 1971, pp. 281-292.

• Kenneth Weber, “The accelerated integer GCD algorithm”, ACM Transactions on Mathe-
matical Software, volume 21, number 1, March 1995, pp. 111-122.

• Paul Zimmermann, “Karatsuba Square Root”, INRIA Research Report 3805, November
1999, https://hal.inria.fr/inria-00072854/PDF/RR-3805.pdf

• Paul Zimmermann, “A Proof of GMP Fast Division and Square Root Implementations”,
https://homepages.loria.fr/PZimmermann/papers/proof-div-sqrt.ps.gz

• Dan Zuras, “On Squaring and Multiplying Large Integers”, ARITH-11: IEEE Symposium
on Computer Arithmetic, 1993, pp. 260 to 271. Reprinted as “More on Multiplying and
Squaring Large Integers”, IEEE Transactions on Computers, volume 43, number 8, August
1994, pp. 899-908.

• Niels Möller, “Efficient computation of the Jacobi symbol”,
https://arxiv.org/abs/1907.07795

ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-01.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-69.ps.gz
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
https://www.ams.org/journals/mcom/2008-77-261/S0025-5718-07-02017-0/home.html
https://www.ams.org/journals/mcom/2008-77-261/S0025-5718-07-02017-0/home.html
https://hal.inria.fr/inria-00072854/PDF/RR-3805.pdf
https://homepages.loria.fr/PZimmermann/papers/proof-div-sqrt.ps.gz
https://arxiv.org/abs/1907.07795

132 GNU MP 6.2.1

Appendix C GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000-2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/

Appendix C: GNU Free Documentation License 133

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

134 GNU MP 6.2.1

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix C: GNU Free Documentation License 135

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

136 GNU MP 6.2.1

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been

Appendix C: GNU Free Documentation License 137

terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See https://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/

138 GNU MP 6.2.1

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

139

Concept Index

#
#include . 17

–
--build . 3
--disable-fft . 7
--disable-shared . 3
--disable-static . 3
--enable-alloca . 7
--enable-assert . 7
--enable-cxx . 6
--enable-fat . 5
--enable-profiling . 7, 26
--exec-prefix . 3
--host . 4
--prefix . 3
-finstrument-functions . 27

2
2exp functions . 23

6
68000 . 13

8
80x86 . 14

A
ABI . 5, 8
About this manual . 2
AC_CHECK_LIB . 27
AIX . 10, 12
Algorithms . 96
alloca . 7
Allocation of memory . 92
AMD64 . 8
Anonymous FTP of latest version 2
Application Binary Interface . 8
Arithmetic functions . 33, 48, 56
ARM . 12
Assembly cache handling . 117
Assembly carry propagation . 117
Assembly code organisation . 116
Assembly coding . 116
Assembly floating Point . 118
Assembly loop unrolling . 120
Assembly SIMD . 119
Assembly software pipelining . 119
Assembly writing guide . 120
Assertion checking . 7, 25
Assignment functions 31, 47, 54, 55
Autoconf . 27

B
Basics . 17
Binomial coefficient algorithm 114
Binomial coefficient functions . 39
Binutils strip . 14
Bit manipulation functions . 40
Bit scanning functions . 40
Bit shift left . 33
Bit shift right . 34
Bits per limb . 21
Bug reporting . 29
Build directory . 3
Build notes for binary packaging 11
Build notes for particular systems 12
Build options . 3
Build problems known . 14
Build system . 3
Building GMP . 3
Bus error . 24

C
C compiler . 5
C++ compiler . 6
C++ interface . 83
C++ interface internals . 125
C++ istream input . 81
C++ ostream output . 77
C++ support . 6
CC . 5
CC_FOR_BUILD . 6
CFLAGS . 5
Checker . 26
checkergcc . 26
Code organisation . 116
Compaq C++ . 12
Comparison functions . 39, 49, 57
Compatibility with older versions 21
Conditions for copying GNU MP 1
Configuring GMP . 3
Congruence algorithm . 105
Congruence functions . 35
Constants . 21
Contributors . 128
Conventions for parameters . 19
Conventions for variables . 18
Conversion functions . 32, 48, 55
Copying conditions . 1
CPPFLAGS . 6
CPU types . 2, 4
Cross compiling . 4
Cryptography functions, low-level 67
Custom allocation . 92
CXX . 6
CXXFLAGS . 6
Cygwin . 13

140 GNU MP 6.2.1

D
Darwin . 15
Debugging . 24
Demonstration programs . 21
Digits in an integer . 44
Divisibility algorithm . 105
Divisibility functions . 35
Divisibility testing . 23
Division algorithms . 103
Division functions . 34, 49, 56
DJGPP . 13, 14
DLLs . 13
DocBook . 7
Documentation formats . 7
Documentation license . 132
DVI . 7

E
Efficiency . 22
Emacs. 28
Exact division functions . 35
Exact remainder . 105
Example programs . 21
Exec prefix . 3
Execution profiling . 7, 26
Exponentiation functions . 36, 57
Export . 43
Expression parsing demo . 22
Extended GCD . 37

F
Factor removal functions . 38
Factorial algorithm . 113
Factorial functions . 38
Factorization demo . 22
Fast Fourier Transform . 100
Fat binary . 5
FFT multiplication . 7, 100
Fibonacci number algorithm . 114
Fibonacci sequence functions . 39
Float arithmetic functions . 56
Float assignment functions . 54, 55
Float comparison functions . 57
Float conversion functions . 55
Float functions . 52
Float initialization functions 52, 55
Float input and output functions 57
Float internals . 123
Float miscellaneous functions . 58
Float random number functions 59
Float rounding functions . 58
Float sign tests . 57
Floating point mode . 12
Floating-point functions . 52
Floating-point number . 17
fnccheck . 27
Formatted input . 79
Formatted output . 74
Free Documentation License . 132
FreeBSD . 12
frexp . 32, 55
FTP of latest version . 2

Function classes . 18
FunctionCheck . 27

G
GCC Checker . 26
GCD algorithms . 106
GCD extended . 37
GCD functions . 37
GDB . 25
Generic C . 5
gmp.h . 17
GMP Perl module . 22
GMP version number . 21
gmpxx.h . 83
GNU Debugger . 25
GNU Free Documentation License 132
GNU strip . 14
gprof . 27
Greatest common divisor algorithms 106
Greatest common divisor functions 37

H
Hardware floating point mode . 12
Headers . 17
Heap problems . 24
Home page . 2
Host system . 4
HP-UX . 9
HPPA . 9

I
i386 . 14
I/O functions . 41, 50, 57
IA-64 . 9
Import . 42
In-place operations . 23
Include files . 17
info-lookup-symbol . 28
Initialization functions 30, 31, 47, 52, 55, 72
Initializing and clearing . 22
Input functions . 41, 50, 57, 81
Install prefix . 3
Installing GMP . 3
Instruction Set Architecture . 8
instrument-functions . 27
Integer . 17
Integer arithmetic functions . 33
Integer assignment functions . 31
Integer bit manipulation functions 40
Integer comparison functions . 39
Integer conversion functions . 32
Integer division functions . 34
Integer exponentiation functions 36
Integer export . 43
Integer functions . 30
Integer import . 42
Integer initialization functions 30, 31
Integer input and output functions 41
Integer internals . 122
Integer logical functions . 40
Integer miscellaneous functions 44
Integer random number functions 42

Concept Index 141

Integer root functions . 36
Integer sign tests . 39
Integer special functions . 44
Interix . 13
Internals . 122
Introduction . 2
Inverse modulo functions . 38
IRIX . 9, 15
ISA . 8
istream input . 81

J
Jacobi symbol algorithm . 108
Jacobi symbol functions . 38

K
Karatsuba multiplication . 97
Karatsuba square root algorithm 110
Kronecker symbol functions . 38

L
Language bindings . 94
Latest version of GMP . 2
LCM functions . 38
Least common multiple functions 38
Legendre symbol functions . 38
libgmp . 17
libgmpxx . 17
Libraries . 17
Libtool . 17
Libtool versioning . 11
License conditions . 1
Limb . 18
Limb size . 21
Linear congruential algorithm 115
Linear congruential random numbers 72
Linking . 17
Logical functions . 40
Low-level functions . 60
Low-level functions for cryptography 67
Lucas number algorithm . 115
Lucas number functions . 39

M
MacOS X . 15
Mailing lists . 2
Malloc debugger . 25
Malloc problems . 24
Memory allocation . 92
Memory management . 20
Mersenne twister algorithm . 115
Mersenne twister random numbers 72
MINGW . 13
MIPS . 9
Miscellaneous float functions . 58
Miscellaneous integer functions 44
MMX . 14
Modular inverse functions . 38
Most significant bit . 44
MPN_PATH . 7

MS Windows . 13
MS-DOS . 13
Multi-threading . 20
Multiplication algorithms . 96

N
Nails . 70
Native compilation . 3
NetBSD . 13
Next prime function . 37
NeXT . 15
Nomenclature . 17
Non-Unix systems . 3
Nth root algorithm . 110
Number sequences . 24
Number theoretic functions . 37
Numerator and denominator . 50

O
obstack output . 77
OpenBSD . 13
Optimizing performance . 15
ostream output . 77
Other languages . 94
Output functions . 41, 50, 57, 76

P
Packaged builds . 11
Parameter conventions . 19
Parsing expressions demo . 22
Particular systems . 12
Past GMP versions . 21
PDF . 7
Perfect power algorithm . 111
Perfect power functions . 37
Perfect square algorithm . 111
Perfect square functions . 37
perl . 22
Perl module . 22
Postscript . 7
Power/PowerPC . 13, 15
Powering algorithms . 109
Powering functions . 36, 57
PowerPC . 10
Precision of floats . 52
Precision of hardware floating point 12
Prefix . 3
Prime testing algorithms . 113
Prime testing functions . 37
Primorial functions . 38
printf formatted output . 74
Probable prime testing functions 37
prof . 26
Profiling . 26

142 GNU MP 6.2.1

R
Radix conversion algorithms . 111
Random number algorithms . 115
Random number functions 42, 59, 72
Random number seeding . 73
Random number state . 72
Random state . 18
Rational arithmetic . 23
Rational arithmetic functions . 48
Rational assignment functions . 47
Rational comparison functions . 49
Rational conversion functions . 48
Rational initialization functions 47
Rational input and output functions 50
Rational internals . 122
Rational number . 17
Rational number functions . 47
Rational numerator and denominator 50
Rational sign tests . 49
Raw output internals . 125
Reallocations . 22
Reentrancy . 20
References . 130
Remove factor functions . 38
Reporting bugs . 29
Root extraction algorithm . 110
Root extraction algorithms . 109
Root extraction functions . 36, 56
Root testing functions . 37
Rounding functions . 58

S
Sample programs . 21
Scan bit functions . 40
scanf formatted input . 79
SCO . 15
Seeding random numbers . 73
Segmentation violation . 24
Sequent Symmetry . 15
Services for Unix . 13
Shared library versioning . 11
Sign tests . 39, 49, 57
Size in digits . 44
Small operands . 22
Solaris . 10, 15
Sparc . 14

Sparc V9 . 10
Special integer functions . 44
Square root algorithm . 110
SSE2 . 14
Stack backtrace . 25
Stack overflow . 7, 24
Static linking . 22
stdarg.h . 17
stdio.h . 17
Stripped libraries . 14
Sun . 10
SunOS . 14
Systems . 12

T
Temporary memory . 7
Texinfo . 7
Text input/output . 24
Thread safety . 20
Toom multiplication . 98, 100, 102
Types . 17

U
ui and si functions . 23
Unbalanced multiplication . 102
Upward compatibility . 21
Useful macros and constants . 21
User-defined precision . 52

V
Valgrind . 26
Variable conventions . 18
Version number . 21

W
Web page . 2
Windows . 13

X
x86 . 14
x87 . 12
XML . 7

143

Function and Type Index

__GMP_CC . 21
__GMP_CFLAGS . 21
__GNU_MP_VERSION . 21
__GNU_MP_VERSION_MINOR . 21
__GNU_MP_VERSION_PATCHLEVEL 21
_mpz_realloc . 44

A
abs . 85, 86, 88

C
ceil . 88
cmp . 85, 86, 88

F
factorial . 85
fibonacci . 85
floor . 88

G
gcd . 85
gmp_asprintf . 77
gmp_errno . 73
gmp_fprintf . 76
gmp_fscanf . 81
gmp_obstack_printf . 77
gmp_obstack_vprintf . 77
gmp_printf . 76
gmp_randclass . 89
gmp_randclass::get_f . 90
gmp_randclass::get_z_bits . 90
gmp_randclass::get_z_range . 90
gmp_randclass::gmp_randclass 89
gmp_randclass::seed . 90
gmp_randclear . 73
gmp_randinit . 72
gmp_randinit_default . 72
gmp_randinit_lc_2exp . 72
gmp_randinit_lc_2exp_size . 72
gmp_randinit_mt . 72
gmp_randinit_set . 72
gmp_randseed . 73
gmp_randseed_ui . 73
gmp_randstate_t . 18
gmp_scanf . 81
gmp_snprintf . 76
gmp_sprintf . 76
gmp_sscanf . 81
gmp_urandomb_ui . 73
gmp_urandomm_ui . 73
gmp_vasprintf . 77
gmp_version . 21
gmp_vfprintf . 76
gmp_vfscanf . 81
gmp_vprintf . 76

gmp_vscanf . 81
gmp_vsnprintf . 76
gmp_vsprintf . 76
gmp_vsscanf . 81
GMP_ERROR_INVALID_ARGUMENT . 73
GMP_ERROR_UNSUPPORTED_ARGUMENT 73
GMP_LIMB_BITS . 70
GMP_NAIL_BITS . 70
GMP_NAIL_MASK . 71
GMP_NUMB_BITS . 70
GMP_NUMB_MASK . 71
GMP_NUMB_MAX . 71
GMP_RAND_ALG_DEFAULT . 72
GMP_RAND_ALG_LC . 72

H
hypot . 88

L
lcm . 85

M
mp_bitcnt_t . 18
mp_bits_per_limb . 21
mp_exp_t . 17
mp_get_memory_functions . 93
mp_limb_t . 18
mp_set_memory_functions . 92
mp_size_t . 18
mpf_abs . 57
mpf_add . 56
mpf_add_ui . 56
mpf_ceil . 58
mpf_class . 83
mpf_class::fits_sint_p . 88
mpf_class::fits_slong_p . 88
mpf_class::fits_sshort_p . 88
mpf_class::fits_uint_p . 88
mpf_class::fits_ulong_p . 88
mpf_class::fits_ushort_p . 88
mpf_class::get_d . 89
mpf_class::get_mpf_t . 84
mpf_class::get_prec . 89
mpf_class::get_si . 89
mpf_class::get_str . 89
mpf_class::get_ui . 89
mpf_class::mpf_class . 87, 88
mpf_class::operator= . 88
mpf_class::set_prec . 89
mpf_class::set_prec_raw . 89
mpf_class::set_str . 89
mpf_class::swap . 89
mpf_clear . 53
mpf_clears . 53
mpf_cmp . 57
mpf_cmp_d . 57
mpf_cmp_si . 57

144 GNU MP 6.2.1

mpf_cmp_ui . 57
mpf_cmp_z . 57
mpf_div . 56
mpf_div_2exp . 57
mpf_div_ui . 56
mpf_eq . 57
mpf_fits_sint_p . 58
mpf_fits_slong_p . 58
mpf_fits_sshort_p . 58
mpf_fits_uint_p . 58
mpf_fits_ulong_p . 58
mpf_fits_ushort_p . 58
mpf_floor . 58
mpf_get_d . 55
mpf_get_d_2exp . 55
mpf_get_default_prec . 52
mpf_get_prec . 53
mpf_get_si . 55
mpf_get_str . 56
mpf_get_ui . 55
mpf_init . 53
mpf_init_set . 55
mpf_init_set_d . 55
mpf_init_set_si . 55
mpf_init_set_str . 55
mpf_init_set_ui . 55
mpf_init2 . 53
mpf_inits . 53
mpf_inp_str . 58
mpf_integer_p . 58
mpf_mul . 56
mpf_mul_2exp . 57
mpf_mul_ui . 56
mpf_neg . 57
mpf_out_str . 58
mpf_pow_ui . 57
mpf_random2 . 59
mpf_reldiff . 57
mpf_set . 54
mpf_set_d . 54
mpf_set_default_prec . 52
mpf_set_prec . 53
mpf_set_prec_raw . 53
mpf_set_q . 54
mpf_set_si . 54
mpf_set_str . 54
mpf_set_ui . 54
mpf_set_z . 54
mpf_sgn . 57
mpf_sqrt . 56
mpf_sqrt_ui . 56
mpf_sub . 56
mpf_sub_ui . 56
mpf_swap . 54
mpf_t . 17
mpf_trunc . 58
mpf_ui_div . 56
mpf_ui_sub . 56
mpf_urandomb . 59
mpn_add . 60
mpn_add_1 . 60
mpn_add_n . 60
mpn_addmul_1 . 62
mpn_and_n . 66
mpn_andn_n . 67

mpn_cmp . 64
mpn_cnd_add_n . 68
mpn_cnd_sub_n . 68
mpn_cnd_swap . 68
mpn_com . 67
mpn_copyd . 67
mpn_copyi . 67
mpn_divexact_1 . 63
mpn_divexact_by3 . 63
mpn_divexact_by3c . 63
mpn_divmod . 63
mpn_divmod_1 . 63
mpn_divrem . 62
mpn_divrem_1 . 63
mpn_gcd . 64
mpn_gcd_1 . 64
mpn_gcdext . 64
mpn_get_str . 65
mpn_hamdist . 66
mpn_ior_n . 66
mpn_iorn_n . 67
mpn_lshift . 64
mpn_mod_1 . 63
mpn_mul . 61
mpn_mul_1 . 62
mpn_mul_n . 61
mpn_nand_n . 67
mpn_neg . 61
mpn_nior_n . 67
mpn_perfect_square_p . 66
mpn_popcount . 66
mpn_random . 66
mpn_random2 . 66
mpn_rshift . 64
mpn_scan0 . 66
mpn_scan1 . 66
mpn_sec_add_1 . 68
mpn_sec_div_qr . 69
mpn_sec_div_qr_itch . 69
mpn_sec_div_r . 69
mpn_sec_div_r_itch . 69
mpn_sec_invert . 70
mpn_sec_invert_itch . 70
mpn_sec_mul . 68
mpn_sec_mul_itch . 68
mpn_sec_powm . 69
mpn_sec_powm_itch . 69
mpn_sec_sqr . 69
mpn_sec_sqr_itch . 69
mpn_sec_sub_1 . 68
mpn_sec_tabselect . 69
mpn_set_str . 65
mpn_sizeinbase . 65
mpn_sqr . 61
mpn_sqrtrem . 65
mpn_sub . 61
mpn_sub_1 . 61
mpn_sub_n . 61
mpn_submul_1 . 62
mpn_tdiv_qr . 62
mpn_xnor_n . 67
mpn_xor_n . 66
mpn_zero . 67
mpn_zero_p . 64
mpq_abs . 49

Function and Type Index 145

mpq_add . 48
mpq_canonicalize . 47
mpq_class . 83
mpq_class::canonicalize . 86
mpq_class::get_d . 86
mpq_class::get_den . 87
mpq_class::get_den_mpz_t . 87
mpq_class::get_mpq_t . 84
mpq_class::get_num . 87
mpq_class::get_num_mpz_t . 87
mpq_class::get_str . 86
mpq_class::mpq_class . 86
mpq_class::set_str . 86
mpq_class::swap . 86
mpq_clear . 47
mpq_clears . 47
mpq_cmp . 49
mpq_cmp_si . 49
mpq_cmp_ui . 49
mpq_cmp_z . 49
mpq_denref . 50
mpq_div . 49
mpq_div_2exp . 49
mpq_equal . 49
mpq_get_d . 48
mpq_get_den . 50
mpq_get_num . 50
mpq_get_str . 48
mpq_init . 47
mpq_inits . 47
mpq_inp_str . 50
mpq_inv . 49
mpq_mul . 49
mpq_mul_2exp . 49
mpq_neg . 49
mpq_numref . 50
mpq_out_str . 50
mpq_set . 47
mpq_set_d . 48
mpq_set_den . 50
mpq_set_f . 48
mpq_set_num . 50
mpq_set_si . 47
mpq_set_str . 47
mpq_set_ui . 47
mpq_set_z . 47
mpq_sgn . 49
mpq_sub . 48
mpq_swap . 48
mpq_t . 17
mpz_2fac_ui . 38
mpz_abs . 33
mpz_add . 33
mpz_add_ui . 33
mpz_addmul . 33
mpz_addmul_ui . 33
mpz_and . 40
mpz_array_init . 44
mpz_bin_ui . 39
mpz_bin_uiui . 39
mpz_cdiv_q . 34
mpz_cdiv_q_2exp . 34
mpz_cdiv_q_ui . 34
mpz_cdiv_qr . 34
mpz_cdiv_qr_ui . 34

mpz_cdiv_r . 34
mpz_cdiv_r_2exp . 34
mpz_cdiv_r_ui . 34
mpz_cdiv_ui . 34
mpz_class . 83
mpz_class::factorial . 85
mpz_class::fibonacci . 85
mpz_class::fits_sint_p . 85
mpz_class::fits_slong_p . 85
mpz_class::fits_sshort_p . 85
mpz_class::fits_uint_p . 85
mpz_class::fits_ulong_p . 85
mpz_class::fits_ushort_p . 85
mpz_class::get_d . 85
mpz_class::get_mpz_t . 84
mpz_class::get_si . 85
mpz_class::get_str . 85
mpz_class::get_ui . 85
mpz_class::mpz_class . 84
mpz_class::primorial . 85
mpz_class::set_str . 85
mpz_class::swap . 85
mpz_clear . 30
mpz_clears . 30
mpz_clrbit . 40
mpz_cmp . 39
mpz_cmp_d . 39
mpz_cmp_si . 39
mpz_cmp_ui . 39
mpz_cmpabs . 39
mpz_cmpabs_d . 39
mpz_cmpabs_ui . 39
mpz_com . 40
mpz_combit . 40
mpz_congruent_2exp_p . 35
mpz_congruent_p . 35
mpz_congruent_ui_p . 35
mpz_divexact . 35
mpz_divexact_ui . 35
mpz_divisible_2exp_p . 35
mpz_divisible_p . 35
mpz_divisible_ui_p . 35
mpz_even_p . 44
mpz_export . 43
mpz_fac_ui . 38
mpz_fdiv_q . 34
mpz_fdiv_q_2exp . 34
mpz_fdiv_q_ui . 34
mpz_fdiv_qr . 34
mpz_fdiv_qr_ui . 34
mpz_fdiv_r . 34
mpz_fdiv_r_2exp . 34
mpz_fdiv_r_ui . 34
mpz_fdiv_ui . 34
mpz_fib_ui . 39
mpz_fib2_ui . 39
mpz_fits_sint_p . 44
mpz_fits_slong_p . 44
mpz_fits_sshort_p . 44
mpz_fits_uint_p . 44
mpz_fits_ulong_p . 44
mpz_fits_ushort_p . 44
mpz_gcd . 37
mpz_gcd_ui . 37
mpz_gcdext . 37

146 GNU MP 6.2.1

mpz_get_d . 32
mpz_get_d_2exp . 32
mpz_get_si . 32
mpz_get_str . 32
mpz_get_ui . 32
mpz_getlimbn . 44
mpz_hamdist . 40
mpz_import . 42
mpz_init . 30
mpz_init_set . 32
mpz_init_set_d . 32
mpz_init_set_si . 32
mpz_init_set_str . 32
mpz_init_set_ui . 32
mpz_init2 . 30
mpz_inits . 30
mpz_inp_raw . 41
mpz_inp_str . 41
mpz_invert . 38
mpz_ior . 40
mpz_jacobi . 38
mpz_kronecker . 38
mpz_kronecker_si . 38
mpz_kronecker_ui . 38
mpz_lcm . 38
mpz_lcm_ui . 38
mpz_legendre . 38
mpz_limbs_finish . 45
mpz_limbs_modify . 45
mpz_limbs_read . 45
mpz_limbs_write . 45
mpz_lucnum_ui . 39
mpz_lucnum2_ui . 39
mpz_mfac_uiui . 38
mpz_mod . 35
mpz_mod_ui . 35
mpz_mul . 33
mpz_mul_2exp . 33
mpz_mul_si . 33
mpz_mul_ui . 33
mpz_neg . 33
mpz_nextprime . 37
mpz_odd_p . 44
mpz_out_raw . 41
mpz_out_str . 41
mpz_perfect_power_p . 37
mpz_perfect_square_p . 37
mpz_popcount . 40
mpz_pow_ui . 36
mpz_powm . 36
mpz_powm_sec . 36
mpz_powm_ui . 36
mpz_primorial_ui . 38
mpz_probab_prime_p . 37
mpz_random . 42
mpz_random2 . 42
mpz_realloc2 . 30
mpz_remove . 38
mpz_roinit_n . 45
mpz_root . 36
mpz_rootrem . 36
mpz_rrandomb . 42

mpz_scan0 . 40
mpz_scan1 . 40
mpz_set . 31
mpz_set_d . 31
mpz_set_f . 31
mpz_set_q . 31
mpz_set_si . 31
mpz_set_str . 31
mpz_set_ui . 31
mpz_setbit . 40
mpz_sgn . 39
mpz_si_kronecker . 38
mpz_size . 45
mpz_sizeinbase . 44
mpz_sqrt . 36
mpz_sqrtrem . 36
mpz_sub . 33
mpz_sub_ui . 33
mpz_submul . 33
mpz_submul_ui . 33
mpz_swap . 31
mpz_t . 17
mpz_tdiv_q . 34
mpz_tdiv_q_2exp . 34
mpz_tdiv_q_ui . 34
mpz_tdiv_qr . 34
mpz_tdiv_qr_ui . 34
mpz_tdiv_r . 34
mpz_tdiv_r_2exp . 34
mpz_tdiv_r_ui . 34
mpz_tdiv_ui . 34
mpz_tstbit . 40
mpz_ui_kronecker . 38
mpz_ui_pow_ui . 36
mpz_ui_sub . 33
mpz_urandomb . 42
mpz_urandomm . 42
mpz_xor . 40
MPZ_ROINIT_N . 45

O
operator"" . 85, 86, 88
operator% . 85
operator/ . 85
operator<< . 77
operator>> . 81, 82, 87

P
primorial . 85

S
sgn . 85, 86, 89
sqrt . 85, 89
swap . 85, 86, 89

T
trunc . 89

	GNU MP Copying Conditions
	Introduction to GNU MP
	How to use this Manual

	Installing GMP
	Build Options
	ABI and ISA
	Notes for Package Builds
	Notes for Particular Systems
	Known Build Problems
	Performance optimization

	GMP Basics
	Headers and Libraries
	Nomenclature and Types
	Function Classes
	Variable Conventions
	Parameter Conventions
	Memory Management
	Reentrancy
	Useful Macros and Constants
	Compatibility with older versions
	Demonstration programs
	Efficiency
	Debugging
	Profiling
	Autoconf
	Emacs

	Reporting Bugs
	Integer Functions
	Initialization Functions
	Assignment Functions
	Combined Initialization and Assignment Functions
	Conversion Functions
	Arithmetic Functions
	Division Functions
	Exponentiation Functions
	Root Extraction Functions
	Number Theoretic Functions
	Comparison Functions
	Logical and Bit Manipulation Functions
	Input and Output Functions
	Random Number Functions
	Integer Import and Export
	Miscellaneous Functions
	Special Functions

	Rational Number Functions
	Initialization and Assignment Functions
	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Applying Integer Functions to Rationals
	Input and Output Functions

	Floating-point Functions
	Initialization Functions
	Assignment Functions
	Combined Initialization and Assignment Functions
	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Input and Output Functions
	Miscellaneous Functions

	Low-level Functions
	Low-level functions for cryptography
	Nails

	Random Number Functions
	Random State Initialization
	Random State Seeding
	Random State Miscellaneous

	Formatted Output
	Format Strings
	Functions
	C++ Formatted Output

	Formatted Input
	Formatted Input Strings
	Formatted Input Functions
	C++ Formatted Input

	C++ Class Interface
	C++ Interface General
	C++ Interface Integers
	C++ Interface Rationals
	C++ Interface Floats
	C++ Interface Random Numbers
	C++ Interface Limitations

	Custom Allocation
	Language Bindings
	Algorithms
	Multiplication
	Basecase Multiplication
	Karatsuba Multiplication
	Toom 3-Way Multiplication
	Toom 4-Way Multiplication
	Higher degree Toom'n'half
	FFT Multiplication
	Other Multiplication
	Unbalanced Multiplication

	Division Algorithms
	Single Limb Division
	Basecase Division
	Divide and Conquer Division
	Block-Wise Barrett Division
	Exact Division
	Exact Remainder
	Small Quotient Division

	Greatest Common Divisor
	Binary GCD
	Lehmer's algorithm
	Subquadratic GCD
	Extended GCD
	Jacobi Symbol

	Powering Algorithms
	Normal Powering
	Modular Powering

	Root Extraction Algorithms
	Square Root
	Nth Root
	Perfect Square
	Perfect Power

	Radix Conversion
	Binary to Radix
	Radix to Binary

	Other Algorithms
	Prime Testing
	Factorial
	Binomial Coefficients
	Fibonacci Numbers
	Lucas Numbers
	Random Numbers

	Assembly Coding
	Code Organisation
	Assembly Basics
	Carry Propagation
	Cache Handling
	Functional Units
	Floating Point
	SIMD Instructions
	Software Pipelining
	Loop Unrolling
	Writing Guide

	Internals
	Integer Internals
	Rational Internals
	Float Internals
	Raw Output Internals
	C++ Interface Internals

	Contributors
	References
	Books
	Papers

	GNU Free Documentation License
	Concept Index
	Function and Type Index

