
ar
X

iv
:1

20
5.

41
47

v1
 [

m
at

h.
A

G
]

 1
8

M
ay

 2
01

2

TUW-12-10
IPMU12-0094

PALP – a User Manual

Andreas P. Braun1, Johanna Knapp2, Emanuel Scheidegger3,
Harald Skarke1 and Nils-Ole Walliser1

1 Institute for Theoretical Physics, Vienna University of Technology,
Wiedner Hauptstrasse 8-10/136, 1040 Vienna, Austria
abraun, skarke, walliser@hep.itp.tuwien.ac.at

2 Kavli IPMU (WPI), The University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

johanna.knapp@ipmu.jp
3 Institute for Mathematics, University of Freiburg,

Eckerstrasse 1, 79104 Freiburg, Germany
emanuel.scheidegger@math.uni-freiburg.de

Abstract

This article provides a complete user’s guide to version 2.1 of the toric geometry pack-
age PALP by Maximilian Kreuzer and others. In particular, previously undocumented
applications such as the program nef.x are discussed in detail. New features of PALP
2.1 include an extension of the program mori.x which can now compute Mori cones and
intersection rings of arbitrary dimension and can also take specific triangulations of reflex-
ive polytopes as input. Furthermore, the program nef.x is enhanced by an option that
allows the user to enter reflexive Gorenstein cones as input. The present documentation
is complemented by a Wiki which is available online.

http://arxiv.org/abs/1205.4147v1

Contents

1 Introduction 2
1.1 A brief history of PALP . 2
1.2 How to use this manual . 4

2 General aspects of using PALP 4
2.1 Polytope input . 5
2.2 Error handling . 6
2.3 Some peculiarities of PALP . 9

3 poly.x 10
3.1 General description of poly.x . 10
3.2 Options of poly.x . 12

4 cws.x 22
4.1 General description of cws.x . 22
4.2 Options of cws.x . 22

5 class.x 24
5.1 General description of class.x . 24
5.2 Options of class.x . 25

6 nef.x 27
6.1 General Description of nef.x . 27
6.2 Nef partitions and reflexive Gorenstein cones 28
6.3 Standard output . 31
6.4 Options of nef.x . 33

7 mori.x 55
7.1 General aspects of mori.x . 55
7.2 Options of mori.x . 57

1 Introduction

1.1 A brief history of PALP

The first lines of code that would eventually become a part of PALP were probably written
in 1992. At that time Max Kreuzer worked together with one of us (HS) on certain quasi-
homogeneous functions relevant to the description of Landau–Ginzburg models that also had
interpretations in terms of Calabi–Yau hypersurfaces in weighted projective spaces. This cul-
minated in the classification (also found, independently, by Klemm and Schimmrigk [1]) of all
such functions relevant to standard string compactifications. As the title of the paper [2], ‘No
mirror symmetry in Landau–Ginzburg spectra!’, suggests, mirror symmetry was incomplete
in that class of models and it was necessary to look for more general scenarios. These were
indeed provided by Batyrev’s elegant construction of mirror pairs of Calabi–Yau spaces via
dual pairs of reflexive polytopes [3].

2

After the proposal [4, 5] of an algorithm for the classification of reflexive polytopes, work
on the implementation of the required routines commenced. The expertise gained in this
project and parts of the code could be used to consider questions like the manifestation of
fibration structures in the toric context [6, 7] or the connectedness of the moduli space of
Calabi–Yau hypersurfaces described by reflexive polytopes [8], and these projects in turn
enhanced the stock of available C routines. A first implementation of the whole algorithm
led to the generation of the complete list of reflexive 3-polytopes [9], but only a thoroughly
revised and optimized version of the code could generate all 473,800,776 reflexive polytopes
in four dimensions [10].

By that time Max was also working with his graduate student Erwin Riegler on an exten-
sion to include nef partitions (leading eventually to [11, 12, 13] and to nef.x). The collection
of available routines had reached a number, a level of complexity and a lack of documenta-
tion that would have rendered them useless within a very short time without any efforts at
preservation. Besides, it was clear that the programs might be useful to other people as well.
So it was decided to work on polishing and documenting the existing routines with the aim
of combining them into a publicly available package. After some time and several candidates
(among them ‘lpoly’) the name of the package became PALP, containing poly.x, class.x,
cws.x. This is an acronym for ‘Package for Analysing Lattice Polytopes’, but we find it quite
appropriate that it shares this name with rather obscure body parts of arachnidae [14].

During the period when Max and Erwin were starting to compile nef partitions, one of
us (ES) joined Max’ group in Vienna as a postdoc. This led to a shift of the focus from the
classification of nef partitions more towards applications in mirror symmetry and led to a
number of new options in nef.x.

A refinement of polytope data by triangulations and the corresponding Mori cones was
made desirable by the following well known facts. Different triangulations of a polytope, hence
different intersection rings, may lead to topologically distinct Calabi–Yau manifolds, while
non–isomorphic polytopes can give rise to equivalent Calabi–Yau manifolds; the intersection
ring is an essential ingredient in Wall’s theorem on the classification of 6-manifolds [15]. From
the point of view of mirror symmetry, the intersection ring and the Mori cone are important
as they enter the GKZ hypergeometric system of differential equations governing the periods
of the mirror hypersurface.

This was enough motivation to extend the existing routines to the computation of the
Mori cone which can be defined entirely in terms of combinatorial data. At that time the
triangulation was viewed as an external input determined by some other specialized program
such as TOPCOM [16]. After the initial success one of Max’ graduate students (JK) started to
develop a code in SINGULAR [17] that computes from this combinatorial data the intersection
rings of the toric variety and the Calabi–Yau hypersurface. This spawned what later would
become mori.x.

A couple of years later Max, together with another graduate student (NW) took this
up with the goal of creating a routine which determines all the unimodular coherent star
triangulations within PALP without having to rely on any external input.

Despite the fact that PALP was originally designed for the specific purposes mentioned
above it has become a versatile tool for both mathematics and physics applications. One
indicator for the success of PALP is that it has been included into the Sage package [18] and
the Debian repositories.

3

1.2 How to use this manual

One of the biggest drawbacks of PALP is the combination of complicated syntax and lack
of concise documentation. While we decided to keep the syntax and its oddities (cf. section
2) for the sake of continuity, we would like to overcome the documentation issue with this
article and a PALP Wiki which is available at [19]. Some parts of PALP have already been
discussed previously. The original paper accompanying the first version of PALP is [20]. It
contains documentation on the programs poly.x, cws.x and class.x. The program mori.x

has been presented in [21]. The program nef.x for analyzing complete intersections in toric
ambient spaces has been written by Erwin Riegler as part of his PhD thesis [13] but has never
been documented. In writing the present manual we have tried to cover all applications, i.e.
there should be no need to read the older papers as well, except for few passages that we cite
at the appropriate points.

In general we do not explain concepts from the theory of polytopes or from toric geometry,
except where this serves to fix notation or where we use non–standard terminology. The reader
is referred to the standard textbooks [22, 23, 24] or any of a number of reviews (those written
by PALP programmers [25, 26] are probably closest to the style of this manual).

We recommend that everyone interested in using PALP read section 2 on general aspects
of the package, which may hold some surprises even for reasonably experienced users. The
next step is to choose some application of PALP (consulting the following paragraph should
help to decide which program provides this application). Then one can jump to the section
describing that program and read the general part of that section. Finally one should consult
the subsections where the required options are described.

This article is organized as follows. In section 2 we give a general overview of the PALP
package and discuss generic properties such as the input of polytope data and error handling.
Furthermore we point out some peculiarities of PALP. The remaining sections each correspond
to one of the executable programs, with a brief general introduction followed by descriptions
for all the available options. Section 3 is devoted to the program poly.x which contains
mainly general purpose routines for analyzing lattice polytopes but also some specialized
routines related to applications in string theory and algebraic geometry that do not fit into
other parts of the package. In sections 4 and 5 we describe the programs cws.x and class.x

which have been essential for the classification of reflexive polytopes. Section 6 contains the
documentation of the program nef.x which provides routines to analyze nef partitions of
reflexive polytopes. In section 7 we discuss PALP’s most recent application mori.x which
computes the Mori cone of a toric variety and, with the help of the program SINGULAR,
topological data such as intersection numbers of (not necessarily Calabi-Yau) hypersurfaces
in those ambient spaces.

2 General aspects of using PALP

In this section we treat aspects of PALP that are common to most or all of its applications.
The first step is to download the package from the website [27] and follow the compilation
instructions given there, which should result in the existence of a directory ‘palp’ containing
the program as well as the executable files.

4

2.1 Polytope input

The majority of applications requires input in the form of a list of polytopes. There are
essentially two ways of entering the data of a polytope. Matrix input starts with a line
containing two numbers nlines and ncolumns (which may be followed by text which is simply
ignored by the program) and proceeds with a matrix with the corresponding numbers of lines
and columns. PALP requires nlines 6= ncolumns and interprets the smaller of the two numbers
as the dimension of the polytope and the other one as the number of polytope points entered
as lines or columns of input.

palp$ poly.x

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 2 This text is ignored by PALP

Type the 6 coordinates as #pts=3 lines with dim=2 columns:

2 0

0 2

0 0

M:6 3 F:3

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

2 3 The same example with transposed input

Type the 6 coordinates as dim=2 lines with #pts=3 columns:

2 0 0

0 2 0

M:6 3 F:3

In both cases the input specifies the polygon (2-polytope) that is the convex hull of the 3
points {(2, 0), (0, 2), (0, 0)} in M = Z

2. The output just means that this polygon has 6 lattice
points, 3 vertices and 3 facets (here, edges). The possibility of ignored text in the input is
useful because PALP’s output can often be used as input for further applications; thereby
extra information can be displayed without destroying the permissible format.

For applications in the context of toric geometry one should be aware of the fact that
there are two relevant, mutually dual lattices M and N whose toric interpretations are quite
different. By default PALP interprets the input polytope as ∆ ⊂ MR. Note that PALP refers
to this polytope as P ; in this paper we shall use both notations. If ∆ (= P) is reflexive, it is
very natural (and, for some applications, more natural) to consider its dual ∆∗ ⊂ NR as well.
If PALP should interpret the input as ∆∗, it must be instructed to do that by an option (-D
for poly.x and mori.x, -N for nef.x). In fact, in the case of mori.x it would be extremely
unnatural to use ∆ as input; therefore matrix input is allowed only with -D to avoid errors.

A second input format uses the fact that many polytopes (in particular the ones related to
the toric description of weighted projective spaces) afford a description as the convex hull of all
points X that lie in the (n−1)-dimensional sublattice M ⊂ Z

n determined by
∑n

i=1 wiXi = 0
and satisfy the inequalities Xi ≥ −1 for i ∈ {1, . . . , n}. Given such a weight system in the
format d w1 w2 ... wn where the wi must be positive integers and d =

∑n
i=1wi, PALP

computes the corresponding list of points and makes a transformation to M ≃ Z
n−1. The

following example corresponds to the Newton polytope of the quintic threefold in P
4.

palp$ poly.x -v

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

5

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 1 1 1 1 1

4 5 Vertices of P

-1 4 -1 -1 -1

-1 -1 4 -1 -1

-1 -1 -1 4 -1

-1 -1 -1 -1 4

As the first line of the prompt indicates, this format can be generalized to the case of k
weight systems describing a polytope in M ≃ Z

n−k. We call the corresponding data, which
should satisfy wij ≥ 0 and (w1j , . . . , wkj) 6= (0, . . . , 0), a CWS (‘combined weight system’).

It is also possible to specify a sublattice of finite index corresponding to the condition∑n
i=1 lixi = 0 mod r by writing /Zr: l1 ...ln after the specification of the (C)WS.
In the following example, 21100 20011 describes a square whose edges have lattice length

2, whereas the condition indicated by Z2: 1 0 1 0 eliminates the interior points of the
edges. The particular output arises because PALP transforms the original and the reduced
lattice to Z

2 in different ways.

palp$ poly.x -v

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

2 1 1 0 0 2 0 0 1 1

2 4 Vertices of P

-1 1 -1 1

-1 -1 1 1

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

2 1 1 0 0 2 0 0 1 1 /Z2: 1 0 1 0

2 4 Vertices of P

-1 0 0 1

1 -1 1 -1

For a reconstruction of the CWS given a polytope as matrix input see the option cws.x

-N in Section 4.2.6.
If PALP is used interactively, it can be terminated by entering an empty line instead of

the data of a polytope. In the case of file input the end of the file results in the termination.

2.2 Error handling

PALP is designed in such a way that it should exit with an error message rather than crash
or display wrong results. The main sources for problems are inappropriately set parameters,
lack of memory and numerical overflows. The most important settings of parameters all occur
at the beginning of Global.h, which is probably the only file that a user may want to modify.

Here are some typical error messages. If we want to analyze the Calabi–Yau sixfold that
is a hypersurface in P

7 with poly.x, the following will happen if PALP has been compiled
with the default settings.

8 1 1 1 1 1 1 1 1

Please increase POLY_Dmax to at least 7

In this case one should edit Global.h (see also section 2.3.4), setting

6

#define POLY_Dmax 7 /* max dim of polytope */

and compile again. Similarly the program may ask for changes of other basic parameters, all
of which are defined within the first 52 lines of Global.h.

In many cases we have implemented checks with the help of the ‘assert’ routine, leading
to error messages such as the following.

poly.x: Vertex.c:613: int Finish_IP_Check(PolyPointList *, ...

EqList *, CEqList *, INCI *, INCI *): Assertion ‘_V->nv<32’ failed.

Abort

In this case one should look up line 613 of Vertex.c,

assert(_V->nv<VERT_Nmax);

This indicates that the value of −V->nv has risen above the value 32 assigned to VERT−Nmax in
Global.h and that the value of VERT−Nmax should be changed correspondingly. At this point
it is important to note that the setting of parameters in Global.h depends on the setting of
POLY−Dmax:

#define POLY_Dmax 6 /* max dim of polytope */

...

#if (POLY_Dmax <= 3)

#define POINT_Nmax 40 /* max number of points */

#define VERT_Nmax 16 /* max number of vertices */

#define FACE_Nmax 30 /* max number of faces */

#define SYM_Nmax 88 /* cube: 2^D*D! plus extra */

#elif (POLY_Dmax == 4)

#define POINT_Nmax 700 /* max number of points */

#define VERT_Nmax 64 /* max number of vertices */

...

Of course one should then modify a parameter such as VERT−Nmax or SYM−Nmax at the
position corresponding to the chosen value of POLY−Dmax. For POLY−Dmax taking values up
to 4, the default parameters in Global.h are chosen in such a way that they work for any
reflexive polytope.

While the error messages mentioned above are related to parameter values that are too
low, excessively high values may also lead to problems such as slowing down the calculation.
In particular, computation time depends very sensitively upon whether VERT−Nmax is larger
than 64. Very high parameter values may also lead to troubles with memory which mani-
fest themselves in error messages such as Unable to alloc space for ... or Allocation
failure in ... or even Segmentation fault. In such a case one can only check whether
there are possibilities for making parameters smaller, or use a computer with more RAM.

An assertion failure that does not refer to an inequality involving a parameter or an
allocation failure, such as

NFX Limit in GL -> 1074575416 !!

is very likely to point to a numerical overflow. In such a case it might help to change line 12
of Global.h from

#define Long long

to

7

#define Long long long

These issues are particularly relevant to the analysis of high-dimensional polytopes, e.g.
in the case of nef.x with nef partitions of large length. In this case, it may happen that
certain parameters in the header file Nef.h may also need to be modified. Here we give a
particularly nasty example:

palp$ nef.x -Lp -N -c6 -P

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

7 9

Please increase POLY_Dmax to at least 12 = 7 + 6 - 1

(nef.x requires POLY_Dmax >= dim N + codim - 1)

This means that in Global.h we need to set POLY Dmax to at least 12:

#define POLY_Dmax 12 /* max dim of polytope */

After recompiling PALP we get further but not far enough:

palp$ nef.x -Lp -N -c6 -P

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

7 9

Type the 63 coordinates as dim=7 lines with #pts=9 columns:

1 0 0 0 0 -1 0 0 -1

0 1 0 0 0 -1 0 0 -1

0 0 1 0 0 -1 0 0 -1

0 0 0 1 0 -1 0 0 0

0 0 0 0 1 -1 0 0 0

0 0 0 0 0 0 1 0 -1

0 0 0 0 0 0 0 1 -1

M:5214 12 N:10 9 codim=6 #part=1

7 10 Points of Poly in N-Lattice:

1 0 0 0 0 -1 0 0 -1 0

0 1 0 0 0 -1 0 0 -1 0

0 0 1 0 0 -1 0 0 -1 0

0 0 0 1 0 -1 0 0 0 0

0 0 0 0 1 -1 0 0 0 0

0 0 0 0 0 0 1 0 -1 0

0 0 0 0 0 0 0 1 -1 0

--

1 1 1 1 1 1 0 0 0 d=6 codim=2

1 1 1 0 0 0 1 1 1 d=6 codim=2

nef.x: Vertex.c:613: Finish_Find_Equations:

Assertion ‘_V->nv<64’ failed.

Aborted

This can be remedied by adjusting the global variable VERT Nmax in Global.h as follows (it
should not be too large):

#define VERT_Nmax 128 /* !! use optimal value !! */

After recompilation it works for a while. Then the following error occurs

Unable to alloc space for _BL

This means that the program has run out of memory.

8

2.3 Some peculiarities of PALP

Much of PALP’s code was written originally with a very specific aim (the classification prob-
lem) in mind, and not with the intention of designing a package that would be immediately
accessible to many users. Other applications were added later by different people. This has
resulted in several peculiar features whose comprehension might help to avoid errors. In the
following we list a few of them.

2.3.1 Option names

PALP does not have any clear convention on how options are named. In fact, it can happen
that options with the same effects have different names in different parts of the package: for
instance, in order to make PALP interpret an input polytope as the (dual) N lattice polytope,
one has to use -D with poly.x and mori.x but -N with nef.x. Ironically, poly.x also has
an option -N whose effect is completely different. It is also worth noting that poly.x and
mori.x admit concatenating several options into one string, e.g. poly.x -gve, mori.x -Hb

whereas other programs require them to be separate, e.g. nef.x -Lp -N -c6 -P.

2.3.2 Indexing conventions

Most of PALP, being programmed in C, follows the convention of using {0, 1, . . . , n − 1} as
the standard n element set. So lists of vertices take the form v0, v1, . . . , vnv−1, a list of points
is given as p0, p1, . . . , pnp−1, and so on. The exception is mori.x which uses {1, . . . , n} as the
standard set.

2.3.3 Binary representation of incidences

PALP represents incidences as bit patterns both internally and in its output; in the case of
mori.x -M even input is required in that format. This works in the following manner. To
any face φ and vertex vi of P a bit bi is assigned via bi = 1 if vi ∈ φ and bi = 0 otherwise;
v0, . . . , vnv−1 are ordered as in the output of poly.x -v. This results in a bit pattern Bv(φ)
which can be written as if it represented a binary number, Bv = bnv−1bnv−2 . . . b0. This is
the convention implemented in poly.x, whereas mori.x writes it as a sequence from left
to right, Bv = b1 . . . bnv−1bnv (remember the last subsection about indexing conventions!).
Furthermore, a bit pattern Bf = {b̃j} related to P ’s facets fj (ordered as in the output of
poly.x -e) can be assigned via b̃j = 1 if φ ⊆ fj and b̃j = 0 otherwise.

2.3.4 The parameter POLY Dmax

POLY Dmax (line 22 of Global.h) is the most important parameter to set before compilation;
for most applications it is probably the only parameter one has to care about. While it usually
suffices to have POLY Dmax not smaller than the dimension of any polytope that one wants to
analyze, there are the following important exceptions.
nef.x normally requires POLY Dmax ≥ dim(N) + codim − 1, which is the dimension of the
support polytope of the corresponding Gorenstein cone which nef.x analyzes;
nef.x -G requires POLY Dmax ≥ dim(input-polytope) +1 because the input-polytope is inter-
preted as the support of the cone and the full dimension of the cone is required for technical
reasons;

9

mori.x -M requires POLY Dmax ≥ np − dim(N)− 1, the dimension of the Mori cone; np is the
total number of input points including the lattice origin, hence the subtraction of 1.

2.3.5 IP property and IP simplices

In PALP’s help screens and output messages every now and then the abbreviation IP occurs.
A priori this is just a shortcut for writing ‘interior point’, as in ‘the generic CY hypersurface
does not intersect the divisors corresponding to IPs of facets’. However, when we say that a
polytope has the IP property, we mean that the polytope has the lattice origin in its interior.
IP simplices are simplices with this property, usually with vertices that are points or vertices
of some given polytope. This concept played an important role in the classification scheme
of [4, 5, 28]. The lattice vectors corresponding to the vertices of an IP simplex define a linear
relation with positive coefficients which is unique up to scaling. Conversely any positive linear
relation among lattice points that cannot be written as the sum of two other such relations
defines an IP simplex. Of course, the set of coefficients is just the weight system defined by
the IP simplex.

3 poly.x

3.1 General description of poly.x

poly.x is the program that provides an interface for PALP’s general purpose routines as well
as certain specialized applications that do not belong to any of the other executables. In other
words, poly.x deals with all applications that are not related to nef partitions, Mori cones
or the classification of reflexive polytopes. As for all of PALP’s programs, a rough guide can
be obtained with the help option:

palp$ poly.x -h

This is ’poly.x’: computing data of a polytope P

Usage: poly.x [-<Option-string>] [in-file [out-file]]

Options (concatenate any number of them into <Option-string>):

h print this information

f use as filter

g general output:

P reflexive: numbers of (dual) points/vertices, Hodge numbers

P not reflexive: numbers of points, vertices, equations

p points of P

v vertices of P

e equations of P/vertices of P-dual

m pairing matrix between vertices and equations

d points of P-dual (only if P reflexive)

a all of the above except h,f

l LG-‘Hodge numbers’ from single weight input

r ignore non-reflexive input

D dual polytope as input (ref only)

n do not complete polytope or calculate Hodge numbers

i incidence information

s check for span property (only if P from CWS)

10

I check for IP property

S number of symmetries

T upper triangular form

N normal form

t traced normal form computation

V IP simplices among vertices of P*

P IP simplices among points of P* (with 1<=codim<=# when # is set)

Z lattice quotients for IP simplices

#=1,2,3 fibers spanned by IP simplices with codim<=#

##=11,22,33,(12,23): all (fibered) fibers with specified codim(s)

when combined: ### = (##)#

A affine normal form

B Barycenter and lattice volume [# ... points at deg #]

F print all facets

G Gorenstein: divisible by I>1

L like ’l’ with Hodge data for twisted sectors

U simplicial facets in N-lattice

U1 Fano (simplicial and unimodular facets in N-lattice)

U5 5d fano from reflexive 4d projections (M lattice)

C1 conifold CY (unimodular or square 2-faces)

C2 conifold FANO (divisible by 2 & basic 2 faces)

E symmetries related to Einstein-Kaehler Metrics

Input: degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘d np’ or ‘np d’ (d=Dimension, np=#[points]) and

(after newline) np*d coordinates

Output: as specified by options

If an input file is indicated, poly.x reads its input data from there; otherwise it asks for input
interactively. The output is displayed to the screen unless an output file is specified. The
following subsection will explain all of the possible options, in the order in which they appear
in the help screen. Here is a rough guide in terms of specific topics:

• General polytope analysis without reference to toric geometry or string theory: -g, -p,

-v, -e, -m, -d, -a, -i, -s, -I, -T, -N, -t, -A, -B, -F, -G, -U, -U1, -E;

• Conifold singularities: -C1, -C2;

• Fano varieties: -U1, -U5, -C2;

• Fibration structures: -[number], -V, -P, -Z;

• IP property (see section 2.3.5): -I;

• IP simplices (see section 2.3.5): -V, -P, -Z, -[number];

• Landau-Ginzburg type superconformal field theories: -l, -L;

• Normal forms: -N, -A;

• Sublattices and quotient actions: -S, -Z, -G;

• Symmetries of a polytope: -S, -t.

11

3.2 Options of poly.x

As many of the following options are very simple to use, we do not always provide examples.
In such cases we highly recommend to try using the option with simple input, e.g. the weight
system 5 1 1 1 1 1 corresponding to the quintic, and a non-reflexive example such as

3 2

Type the 6 coordinates as #pts=3 lines with dim=2 columns:

2 0

0 2

0 0

3.2.1 no option set

In this case the program behaves as if the -g option (see below) were set. This is also the
case if no option other than -r, -D, -n, -Z, -U or -U1, which do not generate any output per
se, is applied.

3.2.2 -h

The help screen is displayed (see above).

3.2.3 -f

The filter flag switches off the prompt for input data. This is useful for building pipelines.

3.2.4 -g

The following output is generated. First, the input is repeated if it is of weight/CWS type,
but not otherwise. Then the numbers #p and #v of lattice points and vertices, respectively,
are displayed in the format ‘M: #p #v’. The remaining output depends on whether P
is reflexive. In this case the numbers #d and #e of dual lattice points and vertices are
displayed in the format ‘N: #d #e’, followed by information on the Hodge numbers of the
corresponding Calabi–Yau manifold if dim(P) ≥ 4; in the case of a three dimensional polytope
corresponding to a K3 surface, where the Hodge numbers are determined anyway, information
on the Picard number and the ‘correction term’ is given instead (the latter is the non-linear
term in Batyrev’s formula for the Picard number [3]; the Picard numbers of a K3 and its
mirror add up to 20+Cor). For non-reflexive P the number #e of facets is shown as ‘F: #e’.

Using this option implies the completion of the set of lattice points in the convex hull
(‘points’ in the help screen always means ‘lattice points’). In the reflexive case it also leads to
the completion of the dual polytope and the computation of the complete incidence structure
which is required for the calculation of the Hodge numbers. For large dimensions these tasks
may result in a long response time or in a crash of the program. In such a case one should use
other options, e.g. -nve, if information on the number of lattice points or Hodge numbers is
not required.

3.2.5 -p

The lattice points of the polytope are displayed.

12

3.2.6 -v

The vertices of the polytope are displayed.

3.2.7 -e

The equations of the hyperplanes bounding the polytope are displayed. If the polytope is not
reflexive, these facet equations are given as lines ‘a1 . . . an c’ normalized such that the ai
have no common divisor and the inequalities ~a · ~x+ c ≥ 0 are satisfied for all points of P .

Reflexivity of a lattice polytope P is equivalent to P ∗ being a lattice polytope, i.e. to c = 1
for all facet equations. In that situation the lines ~a can be interpreted as vertices of P ∗ and
poly.x omits the final column of 1’s, indicating that the resulting matrix can be interpreted
as the list of vertices of the dual polytope. This has the advantage that the output can be
used as input for further computations.

palp$ poly.x -e

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 2

Type the 6 coordinates as #pts=3 lines with dim=2 columns:

1 0

0 1

0 0

3 2 Equations of P

1 0 0

0 1 0

-1 -1 1

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 2

Type the 6 coordinates as #pts=3 lines with dim=2 columns:

1 0

0 1

-1 -1

3 2 Vertices of P-dual <-> Equations of P

2 -1

-1 2

-1 -1

In the first case the output indicates that P can be described by x1 ≥ 0, x2 ≥ 0, −x1−x2+1 ≥
0; in the second case, where a last output column of 1’s only is implicit, P corresponds to
2x1 − x2 + 1 ≥ 0, −x1 + 2x2 + 1 ≥ 0, −x1 − x2 + 1 ≥ 0.

3.2.8 -m

One gets the nv × ne matrix with entries ~aj · ~vi + cj , 1 ≤ i ≤ nv, 1 ≤ j ≤ ne, where nv,
ne are the numbers of vertices and equations, respectively. The elements of this ‘pairing
matrix’ represent the lattice distances between the respective vertices and facets. The orders
of vertices and facets are the same as for -v and -e, so it is useful to combine -m with these
options to see precisely which vertex and facet an entry of the pairing matrix corresponds to.

13

3.2.9 -d

If the polytope is reflexive the lattice points of the dual polytope are displayed.

3.2.10 -a

This is a shortcut for -gpvemd; it can be combined with any other options.

3.2.11 -l

This option is relevant to applications in the context of Landau-Ginzburg models. Together
with its close relative -L, it is the only option of poly.x that requires non-standard input.
Rather than indicate a polytope via matrix or CWS input, one specifies a single weight
system which need not satisfy

∑
ni = d, which is interpreted as data for a superconformal

field theory. If the central charge of this SCFT is a multiple of 3 (which is required by PALP
2.1), the analogue of the Hodge numbers [29, 30] is computed.

palp$ poly.x -l

type degree and weights [d w1 w2 ...]: 5 1 1 1 1 1

5 1 1 1 1 1 M:126 5 N:6 5 V:1,101 [-200]

type degree and weights [d w1 w2 ...]: 3 1 1 1 1 1 1

3 1 1 1 1 1 1 M:56 6 F:6 LG: H0:1,0,1 H1:0,20 H2:1 RefI2

type degree and weights [d w1 w2 ...]: 3 1 1 1 1 1 1 /Z3:

0 1 2 0 1 2 3 1 1 1 1 1 1 /Z3: 0 1 2 0 1 2

M:20 6 F:6 LG: H0:1,0,1 H1:0,20 H2:1 RefI2

Here the first example is the familiar quintic treated as the Gepner model (3)5, the second
example is the Gepner model (1)6 and the third example an orbifold of the second one. More
information can be found in section 4.1 of [20].

3.2.12 -r

Any input that does not correspond to a reflexive polytope will be ignored. This is useful for
filtering out reflexive polytopes from a larger list and saves calculation time if one is interested
only in reflexive polytopes.

3.2.13 -D

The input is regarded as the dual polytope P ∗ ⊂ NR. As this makes sense only in the reflexive
case there is an error message (but no exit from the program) for non-reflexive input. This
option is useful, in particular, if one wants to have control over the order of the points in the
N lattice.

3.2.14 -n

The completion of the set of lattice points is suppressed. Hence the Hodge numbers cannot
be calculated and the output will look like the one for non-reflexive polytopes even in the
reflexive case. In particular, if the input is not of the (C)WS type, the number of points may
be displayed wrongly. If dim(M) is large this option saves a lot of calculation time.

14

3.2.15 -i

Information on the incidence structure is displayed in the following manner. Remember from
section 2.3.3 that any face φ can be assigned a bit pattern Bv(φ) encoding which vertices
lie on φ and a bit pattern Bf (φ) encoding to which facets φ belongs. poly.x -i displays
both types of bit patterns as binary numbers for all faces of P , with ‘v[i]:’ starting a line
of Bv’s corresponding to i-faces and ‘f[j]:’ starting a line of Bf ’s corresponding to j-faces.
Bit patterns at the same positions in the ‘v[i]:’ and ‘f[i]:’ lines correspond to the same
i-faces. The orders of faces within the lines are a consequence of the way PALP computes
them; they conform to the output of other options in the case of i = n − 1 (facets) but not
for i = 0 (vertices).

3.2.16 -s

This option refers to a property of (combined) weight systems that was considered in the early
stages of the classification program [4]. In the higher dimensional embedding defined by a
weight system, the polytope is bounded by the inequalities Xi ≥ −1. We say that the polytope
has the span property if the pullbacks of the equations Xi = −1 to the subspace carrying the
polytope are spanned by vertices of the polytope, i.e. if these equations correspond to facets.
With -s a message is given if the (combined) weight systems does not have this property (try,
for example, the weight system ‘8 3 3 2’).

3.2.17 -I

There is a message if the polytope does not have the origin of the coordinate system in its
interior.

3.2.18 -S

The output contains the following two numbers. The first is the number of lattice automor-
phisms (elements of GL(n,Z)) that leave the polytope invariant; each such automorphism
acts as a permutation on the set of vertices. The second one is the number of permutations
of the set of vertices that leave the vertex pairing matrix (see section 3.2.8) invariant (after
taking into account the induced permutations of facets). This number can also be interpreted
as the number of symmetries of the polytope in R

n; it may be larger than the number of
symmetries in the given lattice.

palp$ poly.x -S

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 1 1 1 1 1

#GL(Z,4)-Symmetries=120, #VPM-Symmetries=120

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 1 1 1 1 1 /Z5: 0 1 2 3 4

#GL(Z,4)-Symmetries=20, #VPM-Symmetries=120

In the first case the symmetry group of the lattice polytope and that of the vertex pairing
matrix are just the permutation group of the 5 vertices, of order 120. In the second case the
invariance under the Z5 group fixes any permutation once the permutations of two of the five

15

vertices have been chosen, reducing the number of group elements to 20. The vertex pairing
matrix remains the same, namely diag(5, 5, 5, 5, 5), and therefore keeps all 120 symmetries.

3.2.19 -T

A coordinate change is performed that makes the matrix of coordinates of the points specified
in the input upper triangular, with minimal entries above the diagonal. This may be useful
for representing the polytope in a specific lattice basis consisting of points of P , or for finding
the volume of a specific cone (if the generators of the cone are the first input points, the
volume will be the product of the entries in the diagonal after the transformation). Using
this option only makes sense if its results are displayed. Therefore it exits with an error if it
is not combined with an output generating option (-v is a natural choice).

3.2.20 -N

This option leads to the computation of a normal form of the polytope, i.e. a matrix containing
the vertices in a specific order in a particular coordinate system, such that this output is the
same for any two polytopes related by a lattice automorphism (see section 3.4 of [9] for the
actual algorithm). This is useful, for example, if two polytopes are suspected to be isomorphic
because they are isomorphic if and only if their normal forms are identical.

Example: the weight systems ‘3402 40 41 486 1134 1701’ and ‘3486 41 42 498 1162 1743’
give rise to the same pair of Hodge numbers (491, 11). The suspicion that they correspond
to the same polytope is confirmed by

palp$ poly.x -N

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3402 40 41 486 1134 1701

4 5 Normal form of vertices of P perm=43210

1 0 0 0 -42

0 1 0 0 -28

0 0 1 0 -12

0 0 0 1 -1

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3486 41 42 498 1162 1743

4 5 Normal form of vertices of P perm=43210

1 0 0 0 -42

0 1 0 0 -28

0 0 1 0 -12

0 0 0 1 -1

The perm=43210 part indicates how the vertices of the polytope had to be permuted to arrive
at the normal form; this is only interesting if the input is of matrix type.

3.2.21 -t

The calculation of the normal form involves determining the pairing matrix, a normal form
for the pairing matrix, an analysis of which symmetries leave this normal form invariant,

16

a preferred ordering of the vertices and a conversion of the resulting vertex coordinate ma-
trix to upper triangular form. The results of these steps, which may provide further useful
information on the structure of P , are displayed.

3.2.22 -V

The IP simplices (see section 2.3.5) whose vertices are also vertices of the dual polytope
are displayed. For illustrating examples look at the next options (-P, -Z) which are closely
related.

3.2.23 -P

The IP simplices (see section 2.3.5) whose vertices are lattice points of the dual polytope P ∗

are displayed. This option should only be used if it is fairly clear that P ∗ does not have too
many lattice points.

palp$ poly.x -P

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

6 1 2 3

2 7 points of P-dual and IP-simplices

1 0 -2 -1 0 -1 0

0 1 -3 -2 -1 -1 0

------------------------------ #IP-simp=4

2 3 1 0 0 0 6=d codim=0

1 2 0 1 0 0 4=d codim=0

1 1 0 0 0 1 3=d codim=0

0 1 0 0 1 0 2=d codim=1

This example shows that the N lattice polytope for P
2
(1,2,3) contains 3 lattice triangles with

the origin in their respective interiors, as well as a lattice line segment with that property.
The weight systems corresponding to these simplices are indicated.

3.2.24 -Z

This option only has an effect if combined with -V or -P. Any IP simplex S of dimension
d occurring there defines two potentially distinct d dimensional sublattices of N : the lattice
generated by the vertices of S, and the sublattice of N lying in the linear subspace that is
spanned by S. Then the program computes the corresponding quotient action. The following
example illustrates this for the case of a bipyramid over a triangle whose vertices generate an
index 3 sublattice of Z2.

palp$ poly.x -VZD

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 5

Type the 15 coordinates as dim=3 lines with #pts=5 columns:

-1 -1 2 0 0

-1 2 -1 0 0

0 0 0 1 -1

3 5 vertices of P-dual and IP-simplices

17

-1 -1 2 0 0

-1 2 -1 0 0

0 0 0 1 -1

------------------------- #IP-simp=2 I=3 /Z3: 2 1 0 0 0

1 1 1 0 0 3=d codim=1 /Z3: 2 1 0 0 0

0 0 0 1 1 2=d codim=2

3.2.25 -[numbers]

If one of the options -B, -U or -C is set, any number is assumed to refer to that option
(see below for descriptions). Otherwise information on fibration structures of the Calabi–Yau
manifold corresponding to a reflexive polytope is displayed. These structures correspond to
reflexive subpolytopes of the N lattice polytope P ∗ that are intersections of the dual polytope
with a linear subspace of NR; see, e.g., [6, 7, 28]. As this is a time consuming task and the
desired output format may vary, there exist two different versions.

If a single number # ∈ {1, 2, 3} is specified, the intersections of P ∗ with all linear subspaces
spanned by IP simplices (see section 2.3.5) are checked for reflexivity. This is much faster than
a complete search for fibration structure but misses fibrations whose corresponding subspaces
are only spanned by a combination of two or more IP simplices. The codimension of the IP
simplices is restricted to 1 ≤codim≤ # (in contrast to our usual policy this option has a side
effect on -P if combined with that option). The output has the same structure as the output
of nef.x− F∗. For further details see Section 6.4.12.

If two numbers are specified, all fibration structures of the given type are computed. For
-11, -22 and -33 all reflexive sections of codimension 1, 2 and 3, respectively, are constructed.
For -12 and -23 all reflexive subpolytopes of codimension 1 and 2 that themselves contain a
reflexive subpolytope with relative codimension 1 are constructed. The output is a polytope in
the N lattice whose choice of bases and whose order of points reflects the fibration structure.
For example, CY threefolds that are both K3 and elliptically fibered are found by applying
poly.x -12 to reflexive 4-polytopes, and fourfolds of that type are found by applying poly.x
-23 to reflexive 5-polytopes.

palp$ poly.x -12

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

84 1 1 12 28 42

4 25 Em:7 3 n:7 3 Km:24 4 n:24 4 M:680 5 N:26 5 p=13bgjn256789...

1 0 -2 -1 0 -1 0 -14 -12 -10 -8 -6 -4 -9 -7 -5 -3 -4 -2 -7 -5 ...

0 1 -3 -2 -1 -1 0 -21 -18 -15 -12 -9 -6 -14 -11 -8 -5 -7 -4 -10...

0 0 0 0 0 0 1 -6 -5 -4 -3 -2 -1 -4 -3 -2 -1 -2 -1 -3 -2 -1 ...

0 ...

Here Em:7 3 n:7 3 refers to data of the elliptic fiber E lying within the K3 fiber indicated
by Km:24 4 n:24 4. The 25 non-zero points of the N lattice polytope are displayed in an
order (first points from the subspace corresponding to E, then points in the K3 but not in E,
finally all other points) and a coordinate system (only the first 2 coordinates non-vanishing for
E, last coordinate vanishing for the K3) that reflect the corresponding nesting of polytopes.
The sequence after p= indicates what permutation with respect to the original order of these
points led to this representation (this is only interesting if the points were entered directly
with the -D option). Further examples on how to use the fibration options can be found in
section 4.2 of [20].

18

3.2.26 -A

Given an arbitrary lattice polytope P , poly.x -A computes its ‘affine normal form’, i.e. a
polytope in Z

n affinely isomorphic to P , such that the normal forms of any two polytopes P
and Q coincide if and only if P and Q are related by an affine lattice isomorphism (cf. -N,
which performs the same task w.r.t. linear rather than affine transformations).

3.2.27 -B

For a given polytope its volume (normalized such that the standard simplex has volume 1)
and the coordinates of its barycentre are displayed.

If an integer n is specified after -B, the polytope is interpreted as the origin and the first
level of a Gorenstein cone (for a discussion see Section 6.2. The points of the cone up to level
n are computed and displayed together with information on the type of face of the cone they
represent (w.r.t. codimension, i.e. the origin has maximal codimension and points interior
to the cone have cd=0). As example, we consider the Gorenstein cone with support polytope
given by the dual of the Newton polytope of the quintic hypersurface in P

4.

palp$ poly.x -B2

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 6

Type the 30 coordinates as dim=5 lines with #pts=6 columns:

1 1 1 1 1 0

1 0 0 0 -1 0

0 1 0 0 -1 0

0 0 1 0 -1 0

0 0 0 1 -1 0

vol=5, baricent=(5,0,0,0,0)/6

IPs:

2 -2 -2 -2 -2 cd=4

2 -1 -1 -1 0 cd=3

2 0 0 0 2 cd=4

2 -1 0 -1 -1 cd=3

2 0 1 0 1 cd=3

2 0 2 0 0 cd=4

2 -1 -1 0 -1 cd=3

2 0 0 1 1 cd=3

2 0 1 1 0 cd=3

2 0 0 2 0 cd=4

2 -1 -1 -1 -1 cd=0

2 0 0 0 1 cd=0

2 0 1 0 0 cd=0

2 0 0 1 0 cd=0

2 0 0 0 0 cd=0

2 0 -1 -1 -1 cd=3

2 1 0 0 1 cd=3

2 1 1 0 0 cd=3

2 1 0 1 0 cd=3

2 1 0 0 0 cd=0

2 2 0 0 0 cd=4

1 -1 -1 -1 -1 cd=4

19

1 0 0 0 1 cd=4

1 0 1 0 0 cd=4

1 0 0 1 0 cd=4

1 0 0 0 0 cd=0

1 1 0 0 0 cd=4

0 0 0 0 0 cd=5

3.2.28 -F

Each facet of a polytope is displayed by listing its vertices in some basis for the sublattice
carrying the facet. The result is not the affine normal form of the facet, however.

3.2.29 -G

If the input polytope P is a non-trivial multiple P = gQ of another lattice polytope Q, the
maximal proportionality factor g and P are displayed.

3.2.30 -L

This option results in the same calculations as the -l option (see above), but gives a more
detailed output including the Witten index.

3.2.31 -U

If1 -U is specified without a number following (otherwise see below), it is computed whether
theN lattice polytope has only simplicial facets; if this is not the case no further computations
are performed on the polytope and no output results from it.

3.2.32 -U1

Like -U without number, but the facets now have to be unimodular (i.e. of volume 1). This
corresponds to the case of Fano varieties.

3.2.33 -U5

This option is related to the classification of Fano polytopes (unimodular and simplicial re-
flexive polytopes) up to dimension five [31]. The corresponding data supplement [32] contains
examples of the usage of -U5.

3.2.34 -C1

This option was implemented for a search of Calabi-Yau threefolds which are related to
previously known ones via conifold transitions [33]. The use of PALP to produce these results
is described at [34]. The input should be a 4-dimensional reflexive polytope P such that
P ∗ has only basic triangles or squares as two-dimensional faces. In this case the associated
generic CY-hypersurface has isolated conifold singularities. The option poly.x -C1 checks
whether this three-dimensional CY is smoothable.

1We are very grateful to Benjamin Nill for providing infomation for the -U, -C and -E options.

20

3.2.35 -C2

The option -C2 was used to generate three-dimensional Fano hypersurfaces with conifold
singularities [35]. For the corresponding data see [36]. The input must be a reflexive 4-
polytope that is divisible by 2, in which case the generic hypersurface associated to P/2 is a
three-dimensional Fano variety. A list of (hopefully all) such polytopes can be found at Max
Kreuzer’s site [37]. It is not clear how he obtained this list. Possibly he piped an extraction of
the complete database of reflexive 4-polytopes through poly.x -G and then used some script
to eliminate polytopes that are odd multiples of other polytopes. The program requires the
input to be in matrix (rather than weight) format.

Example: poly.x -C2 with input ‘8 1 1 1 1 4’ crashes, but with the corresponding matrix
input one gets

palp$ poly.x -C2

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 5

Type the 20 coordinates as dim=4 lines with #pts=5 columns:

-1 7 -1 -1 -1

-1 -1 7 -1 -1

-1 -1 -1 7 -1

-1 -1 -1 -1 1

pic=1 deg=64 h12= 0 rk=0 #sq=0 #dp=0 py=1 F=5 10 10 5 #Fano=1

4 5 Vertices of P* (N-lattice) M:201 5 N:7 5

1 0 0 0 -1

0 0 1 0 -1

0 1 0 0 -1

0 0 0 1 -4

P/2: 36 points (5 vertices) of P’=P/2 (M-lattice):

P/2: 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 ...

P/2: 0 0 4 0 0 1 2 3 0 1 2 3 0 1 2 0 1 0 1 2 ...

P/2: 0 0 0 4 0 0 0 0 1 1 1 1 2 2 2 3 3 0 0 0 ...

P/2: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

3.2.36 -E

poly.x -E checks several symmetry properties of a reflexive polytope related to the set of
roots of the associated toric variety. These are of interest with respect to the existence of
Einstein-Kaehler metrics. Here, a root is a lattice point in the interior of a facet of the
reflexive polytope (in the M lattice). Centrally-symmetric roots are called semisimple. If
all roots are semisimple, then ssroot=1. Only in this case PALP proceeds to check and
display the following conditions: if the barycenter is 0 (bary=1), the sum of lattice points
is 0 (#Psum=1), the sum of lattice points in each multiple is 0 (#kPsum=1), the group of
lattice automorphisms has only the origin as a fixed point (#symm=1). These conditions can
be found explained in Chapter 5 (in particular, sections 5.5 and 5.6) of the dissertation of
Benjamin Nill [38]. This option cannot be combined with others; if -E is specified, all other
options are ignored.

21

4 cws.x

4.1 General description of cws.x

cws.x is concerned mainly with the first steps of the algorithm of [4, 5, 28] for the classification
of reflexive polytopes in a given dimension. In particular it contains an implementation of the
algorithm [5] for the classification of weight systems, and routines for combining these weight
systems into CWS. As always, rough information can be obtained with the help screen.

palp$ cws.x -h

This is ‘cws.x’: create weight systems and combined weight systems.

Usage: cws.x -<options>;

the first option must be ‘w’, ‘c’, ‘i’, ‘d’ or ‘h’.

Options:

-h print this information

-f use as filter; otherwise parameters denote I/O files

-w# [L H] make IP weight systems for #-dimensional polytopes.

For #>4 the lowest and highest degrees L<=H are required.

-r/-t make reflexive/transversal weight systems (optional).

-c# make combined weight systems for #-dimensional polytopes.

For #<=4 all relevant combinations are made by default,

otherwise the following option is required:

-n[#] followed by the names wf_1 ... wf_# of weight files

currently #=2,3 are implemented.

[-t] followed by # numbers n_i specifies the CWS-type, i.e.

the numbers n_i of weights to be selected from wf_i.

Currently all cases with n_i<=2 are implemented.

-i compute the polytope data M:p v [F:f] N:p [v] for all IP

CWS, where p and v denote the numbers of lattice points

and vertices of a dual pair of IP polytopes; an entry

F:f and no v for N indicates a non-reflexive ‘dual pair’.

-d# compute basic IP weight systems for #-dimensional reflexive

Gorenstein cones;

-r# specifies the index as #/2.

-2 adjoin a weight of 1/2 to the input of the weight system.

-N make CWS for PPL in N lattice.

There is also a second help screen that can be called with the option -x (see below).

4.2 Options of cws.x

4.2.1 -w[number]

The behaviour of cws.x -w# depends crucially on #.
If # ≤ 4 all weight systems corresponding to #-dimensional IP-simplices are determined

by executing the algorithm of [5]:

palp$ cws.x -w2

3 1 1 1 rt

4 1 1 2 rt

6 1 2 3 rt #=3 #cand=3

22

The algorithm determines candidates for weight systems and prints them if they lead to
polytopes with the IP property (see section 2.3.5); this holds for all 3 candidates, as #=3

#cand=3 indicates. If such a weight system gives rise to a reflexive polytope (which is always
the case in dimension ≤ 4 [5]) this is indicated by an r; if the (possibly singular) weighted
projective space corresponding to the weight system obeys the ‘transversality condition’ that
the Calabi–Yau hypersurface equation introduces no additional singularities, this is indicated
by a t.

If # > 4, one has to enter a lower and an upper bound for the degrees of the weight
systems. cws.x -w# then examines all possible such systems and displays the ones that
define polytopes with the IP property.

If an extra option of -r or -t is specified, the output contains only the reflexive or
transverse weight systems, respectively. Just try cws.x -w5 5 8, cws.x -w5 5 8 -r and
cws.x -w5 5 8 -t to see how this works.

4.2.2 -c[number]

Now the output contains combined weight systems (CWS). Again all of them are created if
the number after -c is ≤ 4 (try cws.x -c3). Otherwise weight systems that are read from
files are combined. We apologize for not being able to give information beyond the one given
in the help screen.

4.2.3 -i

In this case polytope input is required. The output is like that of poly.x -g, but suppressed
for polytopes without the IP property. This can be useful to filter a list of CWS for the IP
property.

4.2.4 -d[number] [-r[number]]

The so-called basic weight systems for reflexive Gorenstein cones of a given dimension (the
number after -d) and a given index are computed; if -r is used, the index is half the number
after -r, otherwise the index is 1 by default. See [39, 40] for more details.

4.2.5 -2

cws.x -2 < infile > outfile writes the list of weight systems in infile to outfile, but
with a weight of 1/2 adjoined to each input weight system; this is useful because the -d–option
produces only weight systems without weights of 1/2.

4.2.6 -N

Given a polytope as matrix input, this option reconstructs the CWS of a reflexive pair (P,P ∗)
with P ∗ isomorphic to the input polytope. The option only accepts matrix input, otherwise
it returns the message Only PPL-input in Npoly2cws!. It is useful to verify whether a
polytope is actually defined on a sublattice of finite index. As a simple example consider the
polytope consisting of only the vertices of the Newton polytope of the quintic hypersurface
in P

4

23

palp$ cws.x -N

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 5

Type the 20 coordinates as dim=4 lines with #pts=5 columns:

-1 -1 -1 -1 4

-1 -1 -1 4 -1

-1 -1 4 -1 -1

-1 4 -1 -1 -1

5 1 1 1 1 1 /Z5: 4 1 0 0 0 /Z5: 4 0 1 0 0 /Z5: 4 0 0 1 0

This option is in some sense inverse to poly.x without any options, see Section 3, and hence
should viewed as part of poly.x which for historical reasons ended up in cws.x.

4.2.7 -x

A further help screen with additional options is displayed:

palp$ cws.x -x

This is ‘cws.x’: -x gives undocumented extensions:

-ip printf PolyPointList

-id printf dual PolyPointList

-p# [infile1] [infile2] makes cartesian product

of Vertices. # dimensions are identified.

-S count simplex points for weight system

-L count using LattE (-> count redcheck cdd)

As -x refers to ‘experimental’ and none of the authors is familiar with them, we leave it
to the reader to play with them and perhaps find useful applications. It would be greatly
appreciated if any insights gained in this way were communicated via the PALP Wiki [19].

5 class.x

5.1 General description of class.x

class.x implements the actual creation of the complete lists of reflexive polytopes in dimen-
sions up to 4 (see [9, 10]). It contains routines for determining all subpolytopes of a given
polytope in an efficient manner, for finding all lattices on which a given polytope is reflexive,
and for several other tasks relevant to the classification. In particular, as the resulting num-
bers of polytopes tend to get very large, class.x can encode a corresponding list in various
binary formats. This can take the form of a single binary file or a collection of binary files to
which we refer as a database (even though it is not a relational database in the usual sense).
Actually there are two types of database: the first type is used in the classification proce-
dure and contains only information on the polytopes themselves, whereas the second type
also contains Hodge number information; the latter is accessed by the website [40]. class.x
contains routines for converting the various formats and for creating set theoretic unions or
differences of the corresponding lists.

It is very important to use class.x with the appropriate parameter–setting of POLY Dmax

= 4. To get a good feeling for how class.x functions, we recommend to use it for rederiving
the classification of reflexive 3-polytopes following section 3.2 of [20]. The available options
are listed in the help screen:

24

palp$ class.x -h

This is ‘class.x’, a program for classifying reflexive polytopes

Usage: class.x [options] [ascii-input-file [ascii-output-file]]

Options:

-h print this information

-f or - use as filter; otherwise parameters denote I/O files

-m* various types of minimality checks (* ... lvra)

-p* NAME specification of a binary I/O file (* ... ioas)

-d* NAME specification of a binary I/O database (DB) (* ... ios)

-r recover: file=po-file.aux, use same pi-file

-o[#] original lattice [omit up to # points] only

-s* subpolytopes on various sublattices (* ... vphmbq)

-k keep some of the vertices

-c, -C check consistency of binary file or DB

-M[M] print missing mirrors to ascii-output

-a[2b], -A create binary file from ascii-input

-b[2a], -B ascii-output from binary file or DB

-H* applications related to Hodge number DBs (* ...cstfe)

Type one of [m,p,d,r,o,s,c,M,a,b,H] for help on options,

‘g’ for general help, ‘I’ for general information on I/O or ‘e’

to exit:

As the last lines show, this help screen is interactive, i.e. by typing one of the option letters
within the help program one can obtain further information. For this reason, and also because
there are probably not too many potential users of this program, we shall be rather brief in
the following descriptions.

5.2 Options of class.x

In the following we assume that the reader also consults the help text of class.x -h followed
by the letter for the corresponding option; otherwise our explanations may not make much
sense or important details can be missed.

5.2.1 -h

The interactive help screen is displayed (see above).

5.2.2 -f

The filter flag turns off the prompt for input from the screen.

5.2.3 -ml, -mv, -mr, -ma

In [4, 9, 10] several versions of the concept of a minimal polytope were defined (see [28] for
a summary). Given polytope input, it is determined whether these definitions are satisfied.
This is the only option except -h for which both input and output are ascii.

25

5.2.4 -pi, -pa, -ps, -po

-p* specifies the name of a binary file. Depending on the second letter, this may be an input
file, possibly such that the list it encodes should be added to or subtracted from some other
list, or an output file.

5.2.5 -di, -ds, -do

Like -p*, but now the name of a database is specified.

5.2.6 -r

This option was used in the classification of reflexive 4-polytopes to recover intermediate
results after computer crashes.

5.2.7 -o, -o[number], -oc

-o instructs class.x to ignore polytopes that are reflexive only on a sublattice. With a
number following, only up to that number of points are omitted in the search for subpolytopes
(for an example see section 3.1 of [20]). -oc modifies the behaviour of the previous option -r.

5.2.8 -sh, -sp, -sv, -sm, -sb, -sq

A given polytope ∆ may be reflexive w.r.t. several distinct lattices if the lattice Mcoarsest

generated by the vertices of ∆ is not dual to the lattice Ncoarsest generated by the vertices of
∆∗ (see e.g. [28]). -s* finds such cases in the database; various versions called by different
letters after -s correspond to lattices generated by different types of subsets of the set of
lattice points of ∆. For example Calabi-Yau hypersurfaces that are free quotients result from
sublattices generated by all points except those interior to facets.

5.2.9 -k

With -k (for ‘keep’) one can specify some vertices of an input polytope ∆ such that class.x
finds all reflexive subpolytopes of ∆ that still contain these vertices.

5.2.10 -c, -C

These options perform consistency checks on a given file or database. This is very useful if
one suspects that something may have gone wrong with the data.

5.2.11 -M

A list given in binary format is checked for mirror symmetry. Those polytopes that would be
required to make the list mirror symmetric are displayed.

5.2.12 -a, -A

Ascii input is converted to binary file format. -a corresponds to the standard normal form
(cf. section 3.2.20) and -A to the affine normal form (cf. section 3.2.26).

26

5.2.13 -b, -B

Binary input is converted to ascii. -b is the standard version and -B should be used for lists
created with -A.

5.2.14 -Hc, -Hs, -Ht, -Hf, -He

Options of this type are related to the second type of data base which contains data on Hodge
numbers. They work only in dimension 4.

6 nef.x

6.1 General Description of nef.x

nef.x is a package to analyze nef partitions of a reflexive polytope. Such nef partitions
determine complete intersections of Calabi-Yau type in toric varieties of, in principle, arbitrary
codimension. Given a reflexive polytope in terms of a combined weight system (cf. Section 2.1)
or a list of points the main objective of the program is to determine the nef partitions and
the Hodge numbers of the corresponding Calabi-Yau varieties. Further features include the
calculation of the corresponding reflexive Gorenstein cones as well as information about the
fibration structure. A short summary of the available options can be obtained from the help
screen:

palp$ nef.x -h

This is ’./nef.x’: calculate Hodge numbers of nef-partitions

Usage: ./nef.x <Options>

Options:

-h prints this information

-f or - use as filter; otherwise parameters denote I/O files

-N input is in N-lattice (default is M)

-H gives full list of Hodge numbers

-Lv prints L vector of Vertices (in N-lattice)

-Lp prints L vector of Points (in N-lattice)

-p prints only partitions, no Hodge numbers

-D calculates also direct products

-P calculates also projections

-t full time info

-cCODIM codimension (default = 2)

-Fcodim fibrations up to codim (default = 2)

-y prints poly/CWS in M lattice if it has nef-partitions

-S information about #points calculated in S-Poly

-T checks Serre-duality

-s don’t remove symmetric nef-partitions

-n prints polytope only if it has nef-partitions

-v prints vertices and #points of input polytope in one

line; with -u, -l the output is limited by #points:

-uPOINTS ... upper limit of #points (default = POINT_Nmax)

-lPOINTS ... lower limit of #points (default = 0)

-m starts with [d w1 w2 ... wk d=d_1 d_2 (Minkowski sum)

-R prints vertices of input if not reflexive

-V prints vertices of N-lattice polytope

27

-Q only direct products (up to lattice Quotient)

-gNUMBER prints points of Gorenstein polytope in N-lattice

-dNUMBER prints points of Gorenstein polytope in M-lattice

if NUMBER = 0 ... no 0/1 info

if NUMBER = 1 ... no redundant 0/1 info (=default)

if NUMBER = 2 ... full 0/1 info

-G Gorenstein cone: input <-> support polytope

Note that for examples of codimension greater than two calculation times can become very
long and parameters specified in the files Global.h and Nef.h may have to be suitably chosen
upon compilation (cf. Section 2.2).

In this section we will begin with a brief reminder of the notion of a nef partition. Then
we will describe in detail the standard output of nef.x when called without any options.
Finally we will discuss each option in detail and demonstrate its functionality in examples.
Further examples and details can be found at the PALP Wiki [19].

6.2 Nef partitions and reflexive Gorenstein cones

In this subsection, we give a brief summary of nef (’nef’ stands for numerically effective)
partitions and related notions. For details, see [41, 42, 11, 43].

Consider a dual pair of d-dimensional reflexive polytopes ∆ ⊂ MR,∆
∗ ⊂ NR. A partition

V = V0 ∪ · · · ∪ Vr−1 of the set of vertices of ∆∗ into disjoint subsets V0, . . . , Vr−1 is called a
nef partition of length r if there exist r integral upper convex Σ(∆∗)-piecewise linear support
functions φl : NR → R, l = 0, . . . , r − 1 such that

φl(v) =

{
1 if v ∈ Vl,

0 otherwise.
(6.1)

Each φl corresponds to a divisor D0,l =
∑

v∈Vl
Dv on the toric variety P∆∗ associated to ∆∗,

and the intersection of all these divisors

X = D0,0 ∩ · · · ∩D0,r−1 (6.2)

defines a family X ⊂ P∆∗ of Calabi-Yau complete intersections of codimension r.
Moreover, each φl corresponds to a lattice polytop ∆l defined as

∆l =
{
x ∈ MR

∣∣∣ (x, y) ≥ −φl(y) ∀y ∈ NR

}
.

The sum of the functions φl is equal to the support function of the anticanonical divisor
K−1

P∆∗
and, therefore, the corresponding Minkowski sum is ∆0 + · · · + ∆r−1 = ∆. Moreover,

the knowledge of the decomposition V = V0 ∪ · · · ∪ Vr−1 is equivalent to that of the set of
supporting polytopes Π(∆) = {∆0, . . . ,∆r−1}, and therefore this data is often also called a
nef partition.

For a given nef partition Π(∆) the polytopes2

∇l′ =
〈
{0} ∪ Vl′

〉
⊂ NR

define again a nef partition Π∗(∇) = {∇0, . . . ,∇r−1} such that the Minkowski sum ∇ =
∇0+ · · ·+∇r−1 is a reflexive polytope. Then, its dual ∇∗ is also reflexive, and Π∗(∇) is called

2The brackets
〈

· · ·

〉

denote the convex hull.

28

the dual nef partition. This is the combinatorial manifestation of mirror symmetry in terms
of dual pairs of nef partitions of ∆∗ and ∇∗, which we summarize in the following diagram

MR NR

∆ = ∆0 + . . . +∆r−1 ∆∗ = 〈∇0, . . . ,∇r−1〉

(∆l,∇l′) ≥ −δl l′

∇∗ = 〈∆0, . . . ,∆r−1〉 ∇ = ∇0 + . . .+∇r−1

(6.3)

In the horizontal direction, we have the duality between the lattices M and N and mirror
symmetry goes from the upper right to the lower left. The complete intersections X ⊂ P∆∗

and qX ⊂ P∇∗ associated to the dual nef partitions are then mirror Calabi-Yau varieties.
There are two constructions to build new nef partitions from old ones: projections and

direct products. Given a nef partition V = V0 ∪ · · · ∪ Vr−1 where one of the subsets Vl,
say V0, consists of a single vertex v, the nef condition implies that the projection ∆∗

v of ∆∗

along v is reflexive. Moreover, by (6.2) the Calabi–Yau complete intersection X is given by
D ∩X ′ with X ′ =

⋂r−1
l=1 D0,l. Since D can only intersect the toric divisors that correspond to

points bounding the reflexive projection along v, the variety X is isomorphic to the variety
X ′ ⊂ P∆∗

v
, where P∆∗

v
is obtained from the projection ∆∗

v. In [12] such nef partitions were
called trivial. In nef.x they are labeled by P for projection, see Section 6.4.9.

Suppose we are given two lattices M (1),M (2) and two reflexive polytopes ∆(1) ⊂ M
(1)
R

,

∆(2) ⊂ M
(2)
R

such that (∆(1))∗ and (∆(2))∗ admit nef partitions V (1) =
⋃

l V
(1)
l and V (2) =⋃

l V
(2)
l , respectively. Then ∆ = ∆(1) × ∆(2) is reflexive with respect to M = M (1) ⊕ M (2)

and dual to ∆∗ whose set of vertices V is {(v(1), 0) | v(1) ∈ V (1)} ∪ {(0, v(2)) | v(2) ∈ V (2)}. V
admits a nef partition induced from the nef partitions V (1) and V (2). Such a nef partition
is called a direct product since the corresponding Calabi–Yau complete intersection X is a
direct product X = X(1) ×X(2) in P∆∗ = P(∆(1))∗ × P(∆(2))∗ .

One can reformulate the duality of nef partitions in terms of reflexive Gorenstein cones as
follows. We extend the lattices M and N to M̃ = Z

r⊕M and Ñ = Z
r⊕N and set d̃ = d+ r.

A d̃–dimensional rational polyhedral cone C in M̃R is called Gorenstein if C∩(−C) = {0},
there exists an element nC ∈ ÑR such that 〈x, nC〉 > 0 for any nonzero x ∈ C, and all vertices
of the (d̃− 1)–dimensional convex polytope

∆(C) = {x ∈ C | 〈x, nC〉 = 1}

belong to M̃ . The polytope ∆(C) is called the support of C. Conversely, any (d̃ − 1)–
dimensional lattice polytope Λ determines a d̃–dimensional Gorenstein cone C(Λ) as the cone
over Λ with apex at lattice distance 1 from the hyperplane carrying Λ; obviously ∆(C(Λ)) = Λ.

For any m ∈ C ∩ M̃ , we define the degree of m as degm = 〈m,nC〉.
A Gorenstein cone C is called reflexive if the dual cone

qC = {y ∈ ÑR | 〈x, y〉 ≥ 0 ∀x ∈ C}

is also Gorenstein, i.e., there exists m qC
∈ M̃ such that 〈m qC

, y〉 > 0 for all y ∈ qC \{0}, and all

vertices of the support ∆(qC) = {y ∈ qC | 〈m qC
, y〉 = 1} belong to Ñ . We will call the integer

r = 〈m qC
, nC〉 the index of C (or qC).

29

Any nef partition Π(∆) = {∆0, . . . ,∆r−1} of length r of a reflexive polytope ∆ determines

a d̃–dimensional dual pair of reflexive Gorenstein cones C = C(∆1, . . . ,∆r) ⊂ M̃R, qC =
qC(∇1, . . . ,∇r) ⊂ ÑR of index r by

C = {(λ1, . . . , λr, λ1x1 + · · · + λrxr) ∈ M̃R |λi ≥ 0, xi ∈ ∆i, i = 1, . . . , r},

qC = {(µ1, . . . , µr, µ1x1 + · · ·+ µrxr) ∈ ÑR |µi ≥ 0, xi ∈ ∇i, i = 1, . . . , r}.

There are, however, reflexive Gorenstein cones that do not come from nef partitions.
A reflexive Gorenstein cone admits a representation in terms of the points of the underlying

reflexive polytope as follows. Given a point p ∈ ∇l, the corresponding point p̃ ∈ qC(∇1, . . . ,∇r)
is given as

p̃ = (φ0(p), . . . , φr−1(p), p). (6.4)

where φl is the support function (6.1). To see that the two descriptions of qC are equivalent,
note that both correspond to a cone whose support has vertices

(ei(1), v1), . . . , (ei(n), vn), (e1, 0N), . . . , (er, 0N), (6.5)

where {ei} is the standard basis of Zr, i(k) is the number such that vk ∈ V (i(k)) and 0N is
the origin in the N–lattice.

The Hodge numbers of a Calabi–Yau manifold X defined by means of a nef partition
as in (6.2) depend only on the structure of the corresponding reflexive Gorenstein cone in
a manner described in [44, 11]. The corresponding formulas rely heavily on the counting of
lattice points. For any lattice polytope Λ let us denote by ℓ(Λ) the number of lattice points
of Λ and by ℓ∗(Λ) the number of lattice points in the interior of Λ. It can be shown that

SΛ(t) = (1− t)dimΛ+1
∑

k≥0

ℓ(kΛ)tk (6.6)

is a polynomial of degree d ≤ dimΛ+1; SΛ(t) is called the Ehrhart polynomial of Λ. Similarly
one can define a polynomial

TΛ(t) = (1− t)dimΛ+1
∑

k≥0

ℓ∗(kΛ)tk. (6.7)

In terms of a Gorenstein cone C over Λ, with underlying lattice MC , S and T can be written
as

S(C, t) = (1− t)dimC
∑

m∈C∩MC

tdegm, (6.8)

T (C, t) = (1− t)dimC
∑

m∈int(C)∩MC

tdegm. (6.9)

The two polynomials satisfy a relation which is a consequence of Serre duality,

S(C, t) = tdimC T (C, t−1), (6.10)

which provides a stringent test on any results involving lattice point counting. For the com-
putation of Hodge numbers, the S– and T– polynomials for all the faces of C(∆) as well as a
polynomial called B, which is related to the poset structure of C(∆), are required.

30

6.3 Standard output

In this subsection we will explain in detail how to interpret the output of nef.x when called
without any options.

The standard output slightly depends on whether the reflexive polytope is input as a
combined weight system or as a collection of points. If the polytope was entered as a collection
of points, the first line of the output takes the following form:

M:# # N:# # codim=# #part=#

Note that the input polytope is interpreted as ∆ ⊂ MR unless the option -N (cf. Section
6.4.3) is used, while any output of a polytope in matrix format refers to its dual ∆∗ ⊂ NR

except for the option -y (cf. Section 6.4.13. If the input is a CWS, the line starts with the
CWS repeated before the letter M.

M:# # N:# # codim=# #part=#

where the first # stands for the sequence of numbers describing the CWS. The two numbers
after M correspond to the numbers of lattice points and vertices of ∆ ⊂ MR and the
numbers # after N correspond to the numbers of lattice points and vertices of ∆∗ ⊂ NR,
respectively. The number r in codim=r is the length of the nef partition, i.e. the codimension
of the corresponding Calabi–Yau complete intersection. The default value is 2, otherwise it
is specified by the option -c* described in Section 6.4.11. The number n in #part=n is the
number of all the nef partitions that nef.x has found, up to symmetries of the underlying
lattice. If the symmetries of the underlying lattice should not be taken into account, use the
option -s (cf. Section 6.4.16).

The subsequent lines contain the information about the various nef partitions. Note
that the standard output suppresses the output of nef partitions which are equivalent under
symmetries of the CWS. If the codimension is 2 the output line containing the information
on a particular nef partition takes the following form:

H:# [#] P:# V:# # #sec #cpu

The numbers # after H: are the Hodge numbers h1,i(X), i = 1, . . . , d − 1, where d is the
dimension of the Calabi-Yau manifold X obtained via (6.2).

The number # in the square brackets [#] is the Euler number of X . If h0,i(X) 6= 0 for
some i = 1, . . . , d − 1 the Calabi-Yau manifold factorizes. See the option -D (Section 6.4.8)
for this case. In any case, the full Hodge diamond is displayed with the option -H (Section
6.4.4).

The number # after P: is a counter specifying the nef partition. It runs from 0 to n − 1.
Note that nef partitions corresponding to direct products and projections to nef partitions of
lower length are omitted by default. To display them use the options -D (cf. Section 6.4.8),
-Q (cf. Section 6.4.22) for direct products and -P (cf. Section 6.4.9) for projections.

The sequence of numbers # separated by a single space after V: corresponds to the vertices
that belong to the first part V0 of the nef partition. Note that the vertices are counted starting
from 0. These numbers only make sense if the options -n (cf. Section 6.4.17), -Lv (cf. Section
6.4.5) or -Lp (cf. Section 6.4.6) are used. The vertices that belong to the second part V1 of
the nef partition are not displayed, since they are simply the remaining ones. If the polytope
entered also has points that are not vertices and if the option -Lp is used, then the second
sequence of numbers # that is separated from the first sequence by two spaces corresponds to

31

the non-vertex points that belong to the first part V0. For representations of the nef partition
in terms of the Gorenstein cone see the option -g* (cf. Section 6.4.23).

The number # before sec indicates the time that was needed to compute this partition.
The number # before cpu indicates the number of CPU seconds that were needed to com-
pute the Hodge numbers. For determining the nef partitions without computing the Hodge
numbers see the option -p (cf. Section 6.4.7).

If the length r is bigger than 2 the lines containing the information about the various nef
partitions take the following form:

H:# [#] P:# V0:# # V1:# # ... V(r-2):# # #sec #cpu

Now, there are r − 1 expressions of the form Vi:# #, where i runs from 0 to r − 2 each
representing a part Vi of the nef partition. The points and vertices in each Vi are listed in
the same order as in the codimension two case.

The final line of the output always takes the following form:

np=# d:# p:# #sec #cpu

The numbers # after d:, p:, np= are the numbers of nef partitions which are direct products,
projections, and neither of the two, respectively. The total of the three numbers adds up to
n, the total number of nef partitions as indicated in the first line after #part=.

The following example illustrates the standard output of nef.x. We consider complete
intersections of codimension 2 in P

2×P
1×P

2 discussed in [45]. Let e1, . . . , e5 be the standard
basis of R5. We define the polytope ∆∗ ⊂ N by the vertices v0, . . . , v7 given by

v0 = e1, v1 = e2, v2 = −e1 − e2, v3 = e3,

v4 = −e3, v5 = e4, v6 = e5, v7 = −e4 − e5.

By elementary toric geometry, we see that P∆∗ = P
2 × P

1 × P
2 and the combined weight

system can be read off from the linear relations

v0 + v1 + v2 = 0, v3 + v4 = 0, v5 + v6 + v7 = 0.

First, we enter the polytope by giving this combined weight system

palp$ nef.x

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 1 1 1 0 0 0 0 0 2 0 0 0 1 1 0 0 0 3 0 0 0 0 0 1 1 1

3 1 1 1 0 0 0 0 0 2 0 0 0 1 1 0 0 0 3 0 0 0 0 0 1 1 1

M:300 18 N:9 8 codim=2 #part=15

H:19 19 [0] P:0 V:2 4 6 7 1sec 0cpu

H:9 27 [-36] P:2 V:3 4 6 7 1sec 0cpu

H:3 51 [-96] P:3 V:3 5 6 7 1sec 1cpu

H:3 75 [-144] P:4 V:3 6 7 1sec 0cpu

H:3 51 [-96] P:6 V:4 5 6 7 2sec 1cpu

H:3 51 [-96] P:7 V:4 5 6 1sec 1cpu

H:6 51 [-90] P:8 V:4 6 7 1sec 1cpu

H:3 75 [-144] P:9 V:4 6 1sec 1cpu

H:3 60 [-114] P:10 V:5 6 7 2sec 1cpu

H:3 69 [-132] P:11 V:5 6 1sec 1cpu

H:3 75 [-144] P:12 V:6 7 1sec 0cpu

np=11 d:2 p:2 0sec 0cpu

32

Equivalently, we can use the option -N and enter the points of the polytope ∆∗ of the normal
fan of P2 × P

1 × P
2:

palp$ nef.x -N

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 8

Type the 40 coordinates as dim=5 lines with #pts=8 colums:

1 0 -1 0 0 0 0 0

0 1 -1 0 0 0 0 0

0 0 0 1 -1 0 0 0

0 0 0 0 0 1 0 -1

0 0 0 0 0 0 1 -1

M:300 18 N:9 8 codim=2 #part=15

H:3 51 [-96] P:0 V:2 3 4 7 1sec 1cpu

H:3 51 [-96] P:1 V:2 4 6 7 2sec 1cpu

H:3 60 [-114] P:2 V:2 4 7 2sec 1cpu

H:3 51 [-96] P:3 V:2 6 7 1sec 1cpu

H:3 69 [-132] P:4 V:2 7 1sec 1cpu

H:9 27 [-36] P:5 V:3 4 6 7 1sec 0cpu

H:3 75 [-144] P:6 V:3 4 7 0sec 0cpu

H:19 19 [0] P:8 V:4 5 6 7 1sec 0cpu

H:6 51 [-90] P:9 V:4 6 7 1sec 1cpu

H:3 75 [-144] P:10 V:4 7 1sec 0cpu

H:3 75 [-144] P:13 V:6 7 1sec 1cpu

np=11 d:2 p:2 0sec 0cpu

Note that both the points and the nef partitions are given in different orders. The polytope
∆∗ ⊂ NR has 9 points, 8 vertices and the interior point, while the dual polytope ∆ ⊂ MR has
300 points, 18 of which are vertices. The codimension is 2 and there are 15 nef partitions.
There are 11 nef partitions listed, furthermore there are 2 nef partitions which are direct
products, and 2 which are projections. According to the output the nef partitions e.g. 0 and
8 are given as follows (with the Hodge numbers and the Euler number of the corresponding
Calabi-Yau 3-fold X):

0 : V0 = 〈v2, v3, v4, v7〉, V1 = 〈v0, v1, v5, v6〉

h1,1(X) = 3, h2,1(X) = 51, χ(X) = −96.

. . .

8 : V0 = 〈v4, v5, v6, v7〉, V1 = 〈v0, v1, v2, v3〉,

h1,1(X) = 19, h2,1(X) = 19, χ(X) = 0.

. . .

6.4 Options of nef.x

In this subsection we will explain all the options of nef.x in the order of their appearance in
the help screen. Here is a rough guide in terms of specific topics:

• Polytope structure: -N, -Lv, -Lp, -v, -R, -V

• Input control: -N, -c*, -m

33

• Structure of nef partitions: -D, -p, -P, -s, -m

• Hodge numbers: -H, -t, -S, -T

• CWS: -N, -Lv, -Lp, -m

• Fibrations: -F*

• Gorenstein cone: -g*, -d*, -S, -T, -G

• Diagnostics: -t, -S, -T

• Polytope statistics: -y, -n, -v, -R

6.4.1 -h

This option prints the help screen.

6.4.2 -f or -

This option switches off the prompt for the input data. This is useful for building pipelines.

6.4.3 -N

The option -N interprets the input polytope in the N-lattice instead of the M-lattice. The
following example of a complete intersection of degree (2, 2) in P

3 illustrates the difference.
In order to point out the difference we display the points in the two lattices with the option
-Lv.

palp$ nef.x -Lv

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 4

Type the 12 coordinates as dim=3 lines with #pts=4 colums:

-1 0 0 1

-1 0 1 0

-1 1 0 0

M:5 4 N:35 4 codim=2 #part=0

3 4 Vertices in N-lattice:

-1 -1 -1 3

-1 -1 3 -1

-1 3 -1 -1

1 1 1 1 d=4 codim=0

np=0 d:0 p:0 0sec 0cpu

Without the option -N, the output polytope with 35 points and no nef partition is the dual
of the input polytope.

palp$ nef.x -Lv -N

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 4

34

Type the 12 coordinates as dim=3 lines with #pts=4 colums:

-1 0 0 1

-1 0 1 0

-1 1 0 0

M:35 4 N:5 4 codim=2 #part=2

3 4 Vertices in N-lattice:

-1 0 0 1

-1 0 1 0

-1 1 0 0

1 1 1 1 d=4 codim=0

H:[0] P:0 V:2 3 (2 2) 0sec 0cpu

np=1 d:0 p:1 0sec 0cpu

With the option -N, the output polytope is the same as input polytope with 4 points and
the expected nef partition corresponding to the complete intersection of degree (2, 2) in P

3.
Note that the order of the points in the output is the same as in the input. This last feature
is the main advantage of the option -N. The reason is that the basis chosen does not respect
the order given by the combined weight system that was entered. This can be extremely
inconvenient at times. The option -N provides a way to work around this issue: first use the
option -Lv to obtain the vertices for a given CWS. Then reorder them so that the basis of
linear relations complies with the input and enter the reshuffled vertices into nef.x using the
option -N. This will force the linear relations chosen by nef.x to be the same as the CWS.

6.4.4 -H

The option -H replaces the output lines starting with H: with the full Hodge diamond of
the corresponding partition. Note that the information about the nef partitions is omitted.
The following example of codimension 2 complete intersections in P

7 illustrates this option
(increase POLY Dmax to 7):

palp$ nef.x -H

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

7 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 M:1716 7 N:8 7 codim=2 #part=3

h 0 0

h 1 0 h 0 1

h 2 0 h 1 1 h 0 2

h 3 0 h 2 1 h 1 2 h 0 3

h 4 0 h 3 1 h 2 2 h 1 3 h 0 4

h 4 1 h 3 2 h 2 3 h 1 4

h 4 2 h 3 3 h 2 4

h 4 3 h 3 4

h 4 4

1

0 0

0 1 0

35

0 0 0 0

1 237 996 237 1

0 0 0 0

0 1 0

0 0

1

16sec 15cpu

[analogous output for a second nef partition]

6.4.5 -Lv

The option -Lv prints the vertices of ∆∗ ⊂ NR and the non-negative linear relations among
them in addition to the standard output. If only the vertices should be printed use the option
-V in Section 6.4.21. The output takes the following form: The part before the dashed line
reads:

D n Vertices in N-lattice:

... #

.

.

... #

The first line means that ∆∗ has dimension D and is given by n vertices which are the
columns of the subsequent D × n array of numbers #.

Below the dashed line the non-negative linear relations among these vertices are indicated
as follows: Let v0, . . . , vn−1 denote the n vertices corresponding to the n columns above the
dashed line. Any IP simplex (cf. Section 2.3.5) with vertices in {v0, . . . , vn−1} determines a
linear relation

∑n−1
i=0 li vi = 0, with li that are positive for the vertices of the IP simplex and

0 otherwise. It results in an output line of the form

l_0 l_1 ... l_{n-1} d=l codim=c

where l =
∑n−1

i=0 li is the degree of the linear relation and c is the codimension of the IP
simplex. In other words, these lines give the set of generators of the cone of non-negative
linear relations within the (n − D)–dimensional vector space of linear relations among the
vertices. This set is completely fixed by the order of the vertices, and the conditions that
each vector, i.e. each linear relation, is positive and primitive.

The information contained in these lines can be very useful in conjunction with the option
-F* (cf. Section 6.4.12). To suppress them see the option -V (cf. Section 6.4.21).

Besides the standard output the degrees of the nef partition with respect to the linear
relations are inserted in the output lines containing the information about the nef parti-
tions as follows. Consider a nef partition of length r defined by r collections of vertices
V0, . . . , Vr−1 such that every vertex is a member of some collection Vj. The (multi)degree
of the nef partition {V0, . . . , Vr−1} with respect to the linear relation

∑n−1
i=0 li vi = 0 is the

vector (d0, . . . , dr−1) where dj =
∑

i:vi∈Vj
li. Note that

∑r
j=1 dj = l, the degree of the linear

relation. The degrees (d0, . . . , dr−1) are the degrees of the polynomials defining the complete
intersection. If the codimension is 2 the output lines describing the nef partitions take the
following form

H:# [#] P:# V:# # (d10 d11) ... (dn0 dn1) #sec #cpu

36

or if the codimension r is bigger than 2

H:# [#] P:# V0:# # V1:# # ... V(r-2):# #

(d10 ... d1(r-1)) ... (dn0 ... dn(r-1)) #sec #cpu

The additional data is (d10 d11) ... (dn0 dn1) and (d10 ... d1(r-1)) ... (dn0

... dn(r-1)), respectively, where n is the number of linear relations. If di = (di0, . . . , di,r−1)
are the degrees with respect to the i-th linear relation, then di0 = di0, . . ., di(r-1) = di,r−1.
The following example of a codimension 2 complete intersection taken from [12] illustrates
this option:

palp$ nef.x -Lv

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 1 1 1 1 1 0 0 4 0 0 0 1 1 1 1

5 1 1 1 1 1 0 0 4 0 0 0 1 1 1 1 M:378 12 N:8 7 codim=2 #part=8

5 7 Vertices in N-lattice:

0 -1 0 1 0 0 0

0 -1 1 0 0 0 0

-1 0 0 0 0 0 1

-1 1 0 0 1 0 0

-1 1 0 0 0 1 0

1 1 1 1 0 0 1 d=5 codim=1

1 0 0 0 1 1 1 d=4 codim=2

H:2 64 [-124] P:0 V:0 6 (2 3) (2 2) 1sec 0cpu

[standard output for the remaining Hodge data and nef partitions]

From the output we deduce that the 7 vertices of the 5-dimensional polytope satisfy the
following linear relations:

v0 + v1 + v2 + v3 + v6 = 0, v0 + v4 + v5 + v6 = 0.

The first of these linear relations has degree 5, the second has degree 4. The corresponding
IP simplices have codimension 1 and 2, respectively.

6.4.6 -Lp

The option -Lp prints all the points of the N-lattice polytope and the linear relations among
them, including those that are not vertices. The output has the same structure as for the
option -Lv. The points are ordered such that first the vertices {v0, . . . , vk} are listed, then
the points {pk+1, . . . , pN−2} which are not vertices and finally the origin pN−1. Note that
there will be additional linear relations including the points which are neither vertices nor
the origin. The following example of a codimension 2 complete intersection taken from [12]
illustrates this option:

palp$ nef.x -Lp

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 1 1 1 1 1 0 0 10 2 2 2 2 0 1 1

5 1 1 1 1 1 0 0 10 2 2 2 2 0 1 1 M:378 6 N:8 6 codim=2 #part=4

5 8 Points of Poly in N-Lattice:

37

-1 0 0 0 1 0 0 0

-1 0 1 0 0 0 0 0

-1 0 0 1 0 0 0 0

-1 2 0 0 0 0 1 0

-1 1 0 0 0 1 1 0

--

2 1 2 2 2 1 0 d=10 codim=0

1 0 1 1 1 0 1 d=5 codim=1

H:2 86 [-168] P:0 V:1 5 6 (2 8) (1 4) 2sec 2cpu

H:2 68 [-132] P:1 V:2 3 4 (6 4) (3 2) 1sec 0cpu

H:2 68 [-132] P:2 V:3 4 (4 6) (2 3) 1sec 0cpu

np=3 d:0 p:1 0sec 0cpu

The last two points are not vertices. There is one more linear relation including the point p6.

6.4.7 -p

The option -p computes the nef partitions without the (time-consuming) calculation of Hodge
numbers. As an example we consider the codimension 4 (cf. Section 6.4.11) complete inter-
sections in P

7. Note that one must set POLY Dmax in Global.h to at least 10.

palp$ nef.x -c4 -p

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

8 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 M:6435 8 N:9 8 codim=4 #part=5

P:0 V0:2 3 V1:4 5 V2:6 7 0sec 0cpu

np=1 d:0 p:4 0sec 0cpu

The Hodge data in the line containing the partition information is omitted, and the compu-
tation time is 0. Without the option -p this line would look like this:

H:1 65 [-128] P:0 V0:2 3 V1:4 5 V2:6 7 13127sec 13120cpu

Note the computation time.

6.4.8 -D

The option -D also prints those nef partitions which are direct products of lower-dimensional
nef partitions. If only direct products are to be printed use the option -Q described in
Section 6.4.22. As an example we consider a codimension 2 complete intersection in P

2 × P
2:

palp$ nef.x -D

3 1 1 1 0 0 0 3 0 0 0 1 1 1

3 1 1 1 0 0 0 3 0 0 0 1 1 1 M:100 9 N:7 6 codim=2 #part=5

H:4 [0] h1=2 P:0 V:2 3 5 D 0sec 0cpu

H:20 [24] P:1 V:3 4 5 0sec 0cpu

H:20 [24] P:2 V:3 5 0sec 0cpu

H:20 [24] P:3 V:4 5 0sec 0cpu

np=3 d:1 p:1 0sec 0cpu

The last three nef partitions each describe a K3 surface. The first one is a T 4 = T 2 × T 2.
The extra output triggered by -D is:

38

H:4 [0] h1=2 P:0 V:2 3 5 D 0sec 0cpu

h1=2 indicates that the Hodge number h1,0(T 4) = 2 . Furthermore the letter D indicates that
the nef partition is a direct product.

6.4.9 -P

The option -P also prints nef partitions corresponding to projections. Consider for example
a complete intersection of codimension 2 in P

3:

palp$ nef.x -P

4 1 1 1 1

4 1 1 1 1 M:35 4 N:5 4 codim=2 #part=2

H:[0] P:0 V:2 3 0sec 0cpu

H:[0] P:1 V:3 0sec 0cpu

np=1 d:0 p:1 0sec 0cpu

Compared to the output without -P there is one additional line:

H:[0] P:1 V:3 0sec 0cpu

Let v0, . . . , v3 denote the vertices of the polytope. The nef partition P:0 is then as follows:

0 : V0 = 〈v3〉, V1 = 〈v0, v1, v2〉. (6.11)

The part V0 only contains the vertex v3. Therefore the equation of the corresponding divisor
D0,0 in (6.2) reads x3 = 0. The projection π of ∆∗ along v3 yields a reflexive polytope
∆∗

v3
= 〈πv0, πv1, πv2〉. Thus, we are left with a hypersurface X ′ = D0,1 ⊂ P

2 = P
3 ∩D0,0. If

there is a nef partition such that the dual nef partition in the M-lattice has a summand with
only one vertex, then DP is displayed in the output3.

6.4.10 -t

The option -t gives detailed information about the calculation times of the Hodge numbers.
The Hodge numbers of a Calabi–Yau complete intersection are generated by the so called
stringy E-function introduced by Batyrev and Borisov in [44]. The combinatorial construction
of the E-function involves the construction of a B-polynomial and an S-polynomial defined in
[44]. The option -t returns the accumulated computing times of the respective polynomials.
We illustrate this option with the example of complete intersections of codimension 4 in P

7

(cf. Section 6.4.7).

palp$ nef.x -t -c4

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

8 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 M:6435 8 N:9 8 codim=4 #part=5

BEGIN S-Poly 0sec 0cpu

BEGIN B-Poly 11564sec 11558cpu

BEGIN E-Poly 13126sec 13119cpu

H:1 65 [-128] P:0 V0:2 3 V1:4 5 V2:6 7 13126sec 13119cpu

np=1 d:0 p:4 0sec 0cpu

This option can be useful for finding at which point in the calculation of the Hodge numbers
the program crashes.

3We thank Benjamin Nill for pointing this out to us.

39

6.4.11 -c*

The option -c* where * is a positive integer r allows to specify the length of the nef partition
and hence the codimension of the Calabi-Yau complete intersection. The default value for the
codimension is 2. Note that the computation time can take several hours for r = 4 or even
days for r > 4 and PALP may crash because the limits such as the number of vertices etc.
set in Global.h may be exceeded, cf. Section 2.2. We illustrate this option with complete
intersections of codimension 3 in P

2 × P
2:

palp$ nef.x -c3

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 1 1 1 0 0 0 3 0 0 0 1 1 1

3 1 1 1 0 0 0 3 0 0 0 1 1 1 M:100 9 N:7 6 codim=3 #part=7

H:[0] P:0 V0:1 3 V1:4 5 1sec 1cpu

H:[0] P:1 V0:2 3 V1:4 5 1sec 0cpu

np=1 d:1 p:5 0sec 0cpu

Also hypersurfaces can be analyzed with nef.x. As an example we consider the quintic
hypersurface in P

4:

palp$ nef.x -c1

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 1 1 1 1 1

5 1 1 1 1 1 M:126 5 N:6 5 codim=1 #part=1

H:1 101 [-200] P:0 0sec 0cpu

np=1 d:0 p:0 0sec 0cpu

Compare this to the output of poly.x:

palp$ poly.x

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 1 1 1 1 1

5 1 1 1 1 1 M:126 5 N:6 5 H:1,101 [-200]

6.4.12 -F*

The option -F* yields information about possible toric fibrations of the toric variety associ-
ated to the given reflexive lattice polytope. The polytopes associated to the toric fibers are
restricted to be reflexive. By considering nef partitions for the given lattice polytope this op-
tion also computes possible fibrations of the corresponding complete intersection Calabi-Yau
manifolds by lower-dimensional complete intersection Calabi-Yau manifolds. For more details
see [28, 12]. In practice one should always use the option -F* in conjunction with either -Lv
or -Lp. Here * is a non-negative integer s that specifies the maximal codimension s of the
fiber polytope. The default value for s is 2. Note that this codimension does not need to
coincide with the codimension of the corresponding complete intersection Calabi-Yau fiber.
Besides the standard output and the output from the options -Lv or -Lp, the full information
about fibration structures is listed below a second dashed line. The output takes the following
form:

40

--- #fibrations=#

_ _ v v ... p p p v cd=# m: # # n: # #

.

.

.

v p _ v ... v _ _ p cd=# m: # # n: # #

The number # in #fibrations=# specifies the number of fibrations by reflexive polytopes up
to symmetry that have been found. Then each of the subsequent lines corresponds to one
of these fibrations. The points of the given polytope are labeled by either v, p or . This
label indicates whether the corresponding point is a vertex (v), a non-vertex point (p) or not
a point at all () of the fiber polytope. The latter correspond to the directions of the toric
base. The non-negative integer # in cd=# specifies the codimension of the fiber polytope. The
two positive integers # # after m: specify the numbers of points and vertices of the dual of
the fiber polytope, respectively. The two positive integers # # after n: specify the numbers
of points and vertices of the fiber polytope, respectively.

We illustrate this option with a complete intersection of codimension 2 with several fi-
brations. In order to find all fibrations the argument of -F must be set to 3. This is an
example where the interpretation of the fibration information depends on the choice of the
nef partition.

palp$ echo "12 4 2 2 2 1 1 0 8 4 0 0 0 1 1 2" | nef.x -f -Lp -F3

12 4 2 2 2 1 1 0 8 4 0 0 0 1 1 2 M:371 12 N:10 7 codim=2 #part=5

5 10 Points of Poly in N-Lattice:

0 0 0 1 0 -1 0 0 0 0

0 0 1 0 0 -1 0 0 0 0

-1 4 0 0 0 0 0 1 2 0

0 -1 0 0 1 0 0 0 0 0

-1 2 0 0 0 1 1 1 1 0

--

4 1 2 2 1 2 0 0 0 d=12 codim=0

4 1 0 0 1 0 2 0 0 d=8 codim=2

2 0 1 1 0 1 0 0 1 d=6 codim=1

2 0 0 0 0 0 1 0 1 d=4 codim=3

1 0 0 0 0 0 0 1 0 d=2 codim=4

--- #fibrations=3

v v _ _ v _ v p p cd=2 m: 35 4 n: 7 4

v _ v v _ v v p v cd=1 m:117 9 n: 8 6

v _ _ _ _ _ v p v cd=3 m: 9 3 n: 5 3

H:4 58 [-108] P:1 V:0 2 (6 6) (4 4) (3 3) (2 2) (1 1) 1sec 0cpu

H:3 65 [-124] P:2 V:0 2 3 (8 4) (4 4) (4 2) (2 2) (1 1) 1sec 0cpu

H:3 83 [-160] P:3 V:3 5 (4 8) (0 8) (2 4) (0 4) (0 2) 1sec 1cpu

np=3 d:0 p:2 0sec 0cpu

There are three fibrations. The fiber polytope of the second fibration is of codimension 1,
hence has dimension 5−1 = 4. As usual, we label the vertices and points by v0, . . . , v6, p7, p8, p9.
The vertices labeled with are v1 and v4, which are all in V1 for all the three nef partitions.
Since we are considering a complete intersection of codimension 2, the corresponding Calabi–
Yau threefold admits a fibration by K3 surfaces since the fiber has dimension 4− 2 = 2. The

41

linear relation of codimension 1 and degree 6 does not involve v1 and v4, hence it describes the
fiber polytope. The degrees of the nef partitions with respect to this linear relation are given
in the third parentheses in the lines containing the information of the nef partitions. Hence,
the K3 fibers are P(2, 1, 1, 1, 1)[3, 3], P(2, 1, 1, 1, 1)[4, 2], and P(2, 1, 1, 1, 1)[2, 4], respectively.
Note that the second fibration is an instance of the situation that a non-vertex point of the
polytope becomes a vertex of the fiber polytope. Here, this is the point p8.

The fiber polytope of the first fibration is of codimension 2, hence has dimension 5−2 = 3.
Naively, one would expect that the corresponding Calabi–Yau threefolds admit elliptic fibra-
tions. This is indeed true for the first two nef partitions where both V0 and V1 contain vertices
belonging to the fiber polytope. Repeating the steps of the second fibration above in this case
yields the complete intersection P(4, 1, 1, 2)[4, 4] for both nef partitions. After discarding the
trivial projection to the first coordinate, they become the hypersurfaces P(1, 1, 2)[4].

For the third nef partition, however, the vertices and points of the fiber polytope only lie
in the part V1 of the nef partition. Hence, the part V0 reduces the dimension of the base. The
fiber of the corresponding Calabi-Yau threefold is only of codimension 1 in the 3-dimensional
toric fiber, i.e. it is a K3 surface. In fact, the linear relation of codimension 2 and degree 8
involves all points of V1, hence it describes the fiber polytope. The degrees of the third nef
partition with respect to this linear relation are the second parentheses in the line with P:3.
Hence, the K3 fiber is P(4, 1, 1, 2)[8]. This phenomenon is further described in [12].

Finally, the fiber polytope of the third fibration is of codimension 3, and hence has dimen-
sion 5 − 3 = 2. Naively, one would expect that the corresponding Calabi-Yau threefolds do
not admit any fibrations since the codimension is also 2 and hence the fibers would be points.
This is indeed the case for the first two nef partitions. For the third nef partition, the fiber
polytope consists of the points v0, v6, p7, and p8, all of which lie in V1. Hence, the fiber of the
corresponding Calabi-Yau threefold is only of codimension 1 in the 2-dimensional toric fiber,
i.e. it is an elliptic curve. The degrees of the third nef partition with respect to the linear
relation of codimension 3 are the fourth parentheses in the line with P:3. Hence, the elliptic
curve is P(2, 1, 1)[4].

6.4.13 -y

Depending on the input the option -y returns the CWS or the vertices of the M-lattice
polytope if there is at least one nef partition. In order to trigger the output this nef partition
may also be a projection. If there is no nef partition there is no output. Depending on the
input the following output is given:

• if there is a nef partition:

– If the input is a CWS, the CWS is returned along with the polytope data.

– If the input is a polytope in the M-lattice or N-lattice (cf. option -N in Section 6.4.3)
the M-lattice polytope is returned.

• if there is no nef partition

– If the input is a CWS, the CWS is returned without further information about the
polytope.

– If the input is a polytope there is no output.

42

As an example consider the codimension 2 complete intersection in P
3 from Section 6.4.3. If

we enter the N-lattice polytope we get the following output:

palp$ nef.x -y -N

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 4

Type the 12 coordinates as dim=3 lines with #pts=4 columns:

-1 0 0 1

-1 0 1 0

-1 1 0 0

3 4 Vertices of Poly in M-lattice: M:35 4 N:5 4 codim=2 #part=2

-1 -1 -1 3

-1 -1 3 -1

-1 3 -1 -1

6.4.14 -S

The option -S gives information about the number of points in the reflexive Gorenstein cone
and its dual (cf. options -g* and -d* discussed in Sections 6.4.23 and 6.4.24) for each nef
partition which is not a direct product or a projection. It displays the numbers ℓ of lattice
points and ℓ∗ of interior lattice points in degrees k ≤ (d̃ + 1)/2, where d̃ is the dimension
of the Gorenstein cone C, and the analogous data for the dual cone qC. These data enter
the calculation of the (stringy) Hodge numbers via the S-polynomial (hence the name -S)
as described in Section 6.2. The output takes the following form. After the first line of the
standard output, there is a part referring to the polytope ∆(qC):

#points in largest cone:

layer: 1 #p: l1 #ip: l*1

...

layer: . #p: . #ip: .

...

layer: k #p: lk #ip: l*k

where l1 = ℓ(∆(qC)), . . ., lk = ℓ(k∆(qC)), l*1 = ℓ∗(∆(qC)), . . ., l*k = ℓ∗(k∆(qC)). Subse-
quently there is a second part referring to the polytope ∆(C).

#points in largest cone:

layer: 1 #p: l1 #ip: l*1

...

layer: . #p: . #ip: .

...

layer: k #p: lk #ip: l*k

where l1 = ℓ(∆(C)), . . ., lk = ℓ(∆(C)), l*1 = ℓ∗(∆(C)), . . ., l*k = ℓ∗(k∆(C)). Then the
rest of the standard output concerning the nef partitions follows.

The following example illustrates this option. We consider a complete intersection of
codimension 2 in P

4:

palp$ nef.x -S

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 1 1 1 1

43

4 1 1 1 1 M:35 4 N:5 4 codim=2 #part=2

#points in largest cone:

layer: 1 #p: 6 #ip: 0

layer: 2 #p: 21 #ip: 1

layer: 3 #p: 56 #ip: 6

#points in largest cone:

layer: 1 #p: 20 #ip: 0

layer: 2 #p: 105 #ip: 1

layer: 3 #p: 336 #ip: 20

H:[0] P:0 V:2 3 0sec 0cpu

np=1 d:0 p:1 0sec 0cpu

One of the two nef partitions is a projection and is not analyzed. The output for the remaining
nef partition has two blocks: The first block counts the numbers of points (after #p:) and
points in the relative interior (after #ip:) of the Gorenstein cone qC ⊂ Ñ at degrees k = 1, 2, 3.
Hence

ℓ(∆(qC)) = 6, ℓ(2∆(qC)) = 21, ℓ(3∆(qC)) = 56,

ℓ∗(∆(qC)) = 0, ℓ∗(2∆(qC)) = 1, ℓ∗(3∆(qC)) = 6.

One can check that the number of points at degree k = 1 indeed coincides with the number
of points in the output of the option -g2.

The second block gives the same information for the dual Gorenstein cone C ⊂ M̃ . Hence

ℓ(∆(C)) = 20, ℓ(2∆(C)) = 105, ℓ(3∆(C)) = 336,

ℓ∗(∆(C)) = 0, ℓ∗(2∆(C)) = 1, ℓ∗(2∆(C)) = 20.

The output of the option -d2 coincides with the number of points at degree k = 1 .

6.4.15 -T

The option -T turns on an explicit check of the relation (6.10) relating the S– and T–
polynomials. Normally the program actually uses that relation to avoid point counting beyond
degree (d̃+1)/2, but with -T the counting goes up to degree d̃ and an error message is given
if (6.10) is violated. This can be useful if one suspects that the program gives wrong Hodge
numbers, for example because of numerical overflows. If nothing goes wrong, the only effect
is a significantly increased computation time. The best way to illustrate this option is by
combining it with -S. We consider the same example as in the previous subsection.

palp$ nef.x -S -T

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 1 1 1 1

4 1 1 1 1 M:35 4 N:5 4 codim=2 #part=2

#points in largest cone:

44

layer: 1 #p: 6 #ip: 0

layer: 2 #p: 21 #ip: 1

layer: 3 #p: 56 #ip: 6

layer: 4 #p: 125 #ip: 21

layer: 5 #p: 246 #ip: 56

#points in largest cone:

layer: 1 #p: 20 #ip: 0

layer: 2 #p: 105 #ip: 1

layer: 3 #p: 336 #ip: 20

layer: 4 #p: 825 #ip: 105

layer: 5 #p: 1716 #ip: 336

H:[0] P:0 V:2 3 0sec 0cpu

np=1 d:0 p:1 0sec 0cpu

Note how now the point counting proceeds up to degree 5. With these data we can compute
the Ehrhart polynomial

S
∆(qC)

(t) = (1− t)5(1 + 6t+ 21t2 + 56t3 + 125t4 + 246t5 + . . .)

Since it has degree at most d̃ = 5, we find

S∆(qC) = 1 + t+ t2 + t3.

Similarly

T∆(qC)(t) = (1− t)5(t2 + 6t3 + 21t4 + 56t5 + . . .) = t2 + t3 + t4 + t5,

and it is clear that (6.10) is satisfied. A similar check can be performed for C ∩ M̃ with the
data from the second block.

6.4.16 -s

The option -s includes all nef partitions in the output, not just one representative for each
class of nef partitions that are equivalent under symmetries of the CWS. Note that this option
does not print all possible nef partitions as those corresponding to projections (cf. option -P

in Section 6.4.9) or direct products (cf. option -D in Section 6.4.8) are omitted. The example
we consider is a complete intersection of codimension 2 in P

2×P
2. We add the option -Lv in

order to print the vertices and the CWS.

palp$ nef.x -s -Lv

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 1 1 1 0 0 0 3 0 0 0 1 1 1

3 1 1 1 0 0 0 3 0 0 0 1 1 1 M:100 9 N:7 6 codim=2 #part=31

4 6 Vertices in N-lattice:

0 0 0 1 0 -1

0 0 1 0 0 -1

-1 0 0 0 1 0

-1 1 0 0 0 0

45

1 1 0 0 1 0 d=3 codim=2

0 0 1 1 0 1 d=3 codim=2

H:20 [24] P:2 V:4 5 (1 2) (1 2) 0sec 0cpu

H:20 [24] P:4 V:0 5 (1 2) (1 2) 0sec 0cpu

H:20 [24] P:5 V:0 4 (2 1) (0 3) 0sec 0cpu

H:20 [24] P:6 V:0 4 5 (2 1) (1 2) 0sec 0cpu

H:20 [24] P:8 V:1 5 (1 2) (1 2) 1sec 0cpu

H:20 [24] P:9 V:1 4 (2 1) (0 3) 0sec 0cpu

H:20 [24] P:10 V:1 4 5 (2 1) (1 2) 0sec 0cpu

[further Hodge data and nef partitions]

Note that the CWS is symmetric under permutations of the vertices labeled by 0, 1, 4 and
those labeled by 2, 3, 5. Furthermore there only exist three pairs of degrees of the com-
plete intersection (up to exchange within a pair): {(1, 2), (1, 2)}, {(0, 3), (2, 1)}, {(1, 2), (2, 1)}.
Therefore we conclude that there are only three inequivalent nef partitions. This is indeed
confirmed by calling nef.x without the option -s.

6.4.17 -n

The option -n prints the points of the polytope in the N-lattice only if there is at least one nef
partition which does not correspond to a projection or a direct product. In addition, the first
line of the standard output is printed while the other lines are suppressed. As an example we
consider a codimension 2 complete intersection in P

3

palp$ nef.x -n

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 1 1 1 1

4 1 1 1 1 M:35 4 N:5 4 codim=2 #part=2

3 5 Points of Poly in N-Lattice:

-1 0 0 1 0

-1 0 1 0 0

-1 1 0 0 0

6.4.18 -v

The option -v prints the size of the matrix of vertices, the number of points and the vertices
of the polytope that has been entered (M-lattice or N-lattice, depending on the input). If the
input is the CWS the M-lattice polytope is analyzed. The output is printed in a single line
with the character E as separator. Furthermore one can limit the output to polytopes whose
number of points is constrained by a lower and an upper bound:

• -v -u#, where # is an integer ≥ 0, only gives output if the polytope has at most #
points. The default value is the parameter POINT Nmax which fixes the maximal number
of points of a polytope at compilation.

• -v -l#, where # is an integer ≥ 0, only gives output if the polytope has at least #
points. The default value is 0.

After closing the program a summary is printed. It contains information on the number of the
examined polytopes which satisfy the bounds and the number of polytopes with # of points.

46

As an example we consider complete intersections of codimension 2 in P
3 and P

2×P
2 with

the weight matrices as input and without bounds.

palp$ nef.x -v

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 1 1 1 1

3 4 P:35 E -1 3 -1 -1E -1 -1 3 -1E -1 -1 ...

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 1 1 1 0 0 0 3 0 0 0 1 1 1

4 9 P:100 E -1 2 -1 -1 2 -1 -1 2 -1E

-1 -1 2 -1 -1 2 -1 -1 2E

-1 -1 -1 2 2 2 -1 -1 -1E

-1 -1 -1 -1 -1 -1 2 2 2

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

2 of 2

35# 1

100# 1

Since we have entered a CWS the M-lattice polytope is analyzed. Let us discuss the first line
of output:

3 4 P:35 E -1 3 -1 -1E -1 -1 3 -1E -1 -1 ...

The first two numbers indicate the number of rows and columns of the matrix of vertices in
the M-lattice polytope. P:35 indicates that the M-lattice polytope has 35 points. The vertices
of the M-lattice polytope are then written in one line with the separator E. The output of
the second example is analogous. After we quit PALP by hitting enter without input the
following output is given:

2 of 2

35# 1

100# 1

This means that 2 out of the 2 polytopes analyzed satisfy the bounds and that there is one
polytope with 35 points and one with 100.

Next, we consider the same example as above but with the upper bound for the number
of points set to 50:

palp$ nef.x -v -u50

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 1 1 1 1

3 4 P:35 E -1 3 -1 -1E -1 -1 3 -1E -1 -1 ...

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 1 1 1 0 0 0 3 0 0 0 1 1 1

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

47

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

1 of 2

35# 1

Now the second polytope exceeds the upper bound for the points as it has 100 points (cf.
previous example). There is no output for the second polytope and the summary indicates
that only one of the two polytopes analyzed satisfies the bounds.

6.4.19 -m

The option -m returns a nef partition of length 2 resulting from a partition d = d1 + d2 of
the degree of a weight system. More precisely, the input data is a single weight system w
and two positive integers d1, d2 such that

∑
i wi = d1 + d2. The input format is # d=# #,

where the first # is the usual CWS, while the # after d= refer to d1 and d2, respectively.
As always, w specifies ∆(d) ⊂ M as the Newton polytope of degree d. Furthermore, the
degrees d1, d2 specify Newton polytopes ∆(d1),∆(d2) from which one obtains the Minkowski
sum ∆(d1,d2) = ∆(d1) + ∆(d2) ⊆ ∆(d). If ∆1 = ∆(d1),∆2 = ∆(d2) define a nef partition
(∇1,∇2) of the vertices of (∆(d1,d2))∗, then the data of this nef partition are given in the
standard output.

The following example taken from [12] illustrates this option. We consider the weighted
projective space P(1, 1, 1, 1, 4, 6) specified by the weight vector 14 1 1 1 1 4 6 of degree d = 14.
The polytope ∆ = ∆(14) is the Newton polytope of degree 14 monomials in this space. We
first analyze the toric variety determined by ∆(14):

palp$ nef.x -Lv

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

14 1 1 1 1 4 6

14 1 1 1 1 4 6 M:1271 13 N:10 8 codim=2 #part=2

5 8 Vertices in N-lattice:

0 -1 0 0 0 1 0 0

0 -1 1 0 0 0 0 0

0 -1 0 1 0 0 0 0

0 -4 0 0 1 0 -1 -1

1 -6 0 0 0 0 -1 -2

--

6 1 1 1 4 1 0 0 d=14 codim=0

1 0 0 0 1 0 1 0 d=3 codim=3

2 0 0 0 1 0 0 1 d=4 codim=3

H:1 149 [-296] P:1 V:3 4 5 7 8 (6 8) (1 2) (2 2) 2sec 1cpu

np=1 d:0 p:1 2sec 1cpu

So ∆(14) has 1271 lattice points and 13 vertices, and (∆(14))∗ is the convex hull of the eight
vertices shown in the output. By considering the weight systems below the dashed line one
sees that P(∆(14))∗ is the blowup of P(1, 1, 1, 1, 4, 6) along the divisors corresponding to the

last two vertices of (∆(14))∗. Now we want to use the option -m to see whether the partition
14 = 2 + 12 determines a nef partition via the Minkowski sum ∆(2,12) = ∆(2) +∆(12).

palp$ nef.x -Lv -m

48

type degrees and weights [d w1 w2 ... wk d=d_1 d_2]:

14 1 1 1 1 4 6 d=2 12

14 1 1 1 1 4 6 d=2 12 M:1270 12 N:11 7 codim=2 #part=2

5 7 Vertices in N-lattice:

0 -1 0 0 0 1 0

0 -1 1 0 0 0 0

0 -1 0 1 0 0 0

0 -4 0 0 1 0 -2

1 -6 0 0 0 0 -3

6 1 1 1 4 1 0 d=14 codim=0

3 0 0 0 2 0 1 d=6 codim=3

d=12 2H:3 243 [-480] P:0 V:3 5 (2 12) (0 6) 7sec 6cpu

np=1 d:0 p:1 0sec 0cpu

The output indeed yields such a nef partition. Since not every monomial of degree 14 is a
product of monomials of degree 2 and 12, the polytope ∆(2,12) is only a proper subpolytope
of ∆(14). Consequently P(∆(2,12))∗ is obtained from P(∆(14))∗ by a further blowup along the

vertex (0, 0, 0,−2,−3)T .
By using the option -m in the same way one can find that ∆(6,8) = ∆(14) and that

14 = 3 + 11 does not give rise to a nef partition.

6.4.20 -R

The option -R prints the vertices of the input polytope if it is not reflexive. To illustrate this
we enter the CWS of a polytope which is not reflexive:

palp$ nef.x -R

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

6 3 2 1 0 0 5 0 0 1 1 3

3 7 Vertices of input polytope:

-1 1 0 0 1 0 -1

0 1 -1 1 4 4 1

-1 0 0 0 -1 -1 -1

The same output is given if we enter the polytope itself. Without the option -R there is no
output if the polytope is not reflexive.

6.4.21 -V

The option -V prints the vertices of the polytope in the N-lattice together with the standard
output. In contrast to the option -Lv (cf. Section 6.4.5) the information about the linear
relations is not given. Furthermore, in the lines containing the nef partitions the additional in-
formation about the degrees is omitted. The option -V also works for non-reflexive polytopes.
As an example we consider a complete intersection of codimension 2 in P

3:

palp$ nef.x -V

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 1 1 1 1

4 1 1 1 1 M:35 4 N:5 4 codim=2 #part=2

49

3 4 Vertices of P:

-1 0 0 1

-1 0 1 0

-1 1 0 0

H:[0] P:0 V:2 3 0sec 0cpu

np=1 d:0 p:1 0sec 0cpu

We can also enter the M-lattice polytope to get the same result. If the polytope is non-reflexive
the output is the same as for the option -R (cf. Section 6.4.20).

6.4.22 -Q

The option -Q prints the information about the nef partitions and the Hodge numbers only
if the corresponding complete intersection is a direct product (cf. option -D in Section 6.4.8)
up to lattice quotients. If none of the nef partitions is a direct product only the numbers of
points and vertices in the M- and N-lattice, together with the codimension and the number
of nef partitions is given.

Consider the complete intersection of codimension 2 in P
2 × P

2. As one can check using
the option -D one of the nef partitions corresponds to a direct product:

palp$ nef.x -Q

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 1 1 1 0 0 0 3 0 0 0 1 1 1

3 1 1 1 0 0 0 3 0 0 0 1 1 1 M:100 9 N:7 6 codim=2 #part=5

H:4 [0] h1=2 P:0 V:2 3 5 D 0sec 0cpu

np=4 d:1 p:0 0sec 0cpu

The N-lattice polytope of P3 has no nef partition corresponding to a direct product. Then
the output looks as follows:

palp$ nef.x -Q

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 1 1 1 1

4 1 1 1 1 M:35 4 N:5 4 codim=2 #part=2

np=2 d:0 p:0 0sec 0cpu

6.4.23 -g*

The option -g*, where * is an integer m = 0, 1, 2, returns the points of the supports ∆(qC)
of the Gorenstein cones qC ⊂ ÑR associated to the nef partitions of length r of the input
polytope ∆∗ ⊂ NR. For the notation on Gorenstein cones see Section 6.2. The default value
is m = 1. The standard output is changed as follows. The lines containing the information
about the nef partition including the Hodge numbers, the parts of the nef partition etc. are
suppressed. Instead, for each nef partition the points of ∆(qC) are printed in the following
form:

D n Points of PG: (nv=#)

... #

.

.

... #

50

The interpretation depends on the integer m. For m = 2 the output is the list of points p̃ ∈ qC
as given in (6.4). Note that since the origin 0N belongs to every part of the nef partition, it
appears r times, each time another of the r support functions being equal to 1. For m = 1
the redundant coordinate φ0(p) is omitted in p̃ and we obtain vectors p̃′. For m = 0 all φi(p)
are omitted and the resulting r-fold occurrence of 0N is reduced to just a single occurrence;
information on the nef partition is lost and the output becomes just the list of lattice points
of ∆∗. The values of D, n and the # columns are summarized in Table 6.1, where n is the

m 0 1 2

D d d̃− 1 d̃
n n n+ r − 1 n+ r − 1

column p p̃′ p̃

Table 6.1: The meaning of the output of the options -g* and -d*

number of lattice points in ∆∗ and d, r, d̃ are as in Section 6.2. The number # in nv=# denotes
the number of vertices of the cone qC. The order of the points is first the vertices, then the
non-vertex points with the origin at the end.

The following example illustrates this option. We consider complete intersections of codi-
mension 2 in P

2×P
1×P

2 discussed in [45]. The nef partitions for this example were discussed
in Section 6.3. With the choice of m=2 we obtain the information about the partition in terms
of the Gorenstein cone. Let v0, . . . , v7 denote the vertices of the polytope in the N-lattice.

palp$ nef.x -N -g2

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 8

Type the 40 coordinates as dim=5 lines with #pts=8 colums:

1 0 -1 0 0 0 0 0

0 1 -1 0 0 0 0 0

0 0 0 1 -1 0 0 0

0 0 0 0 0 1 0 -1

0 0 0 0 0 0 1 -1

M:300 18 N:9 8 codim=2 #part=15

7 10 Points of PG: (nv=8)

1 1 0 0 0 1 1 0 0 1

0 0 1 1 1 0 0 1 1 0

1 0 -1 0 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 0

0 0 0 1 -1 0 0 0 0 0

0 0 0 0 0 1 0 -1 0 0

0 0 0 0 0 0 1 -1 0 0

7 10 Points of PG: (nv=8)

1 1 0 1 0 1 0 0 0 1

0 0 1 0 1 0 1 1 1 0

1 0 -1 0 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 0

0 0 0 1 -1 0 0 0 0 0

0 0 0 0 0 1 0 -1 0 0

0 0 0 0 0 0 1 -1 0 0

51

[output of further nef partitions]

Let us consider the nef partition P:8 as produced for instance by the option -N -Lp:

H:19 19 [0] P:8 V:4 5 6 7 (0 3) (1 1) (3 0) 0sec 0cpu

This example was the focus of [45]. The output of -g2 for this nef partition is:

7 10 Points of PG: (nv=8)

1 1 1 1 0 0 0 0 0 1

0 0 0 0 1 1 1 1 1 0

1 0 -1 0 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 0

0 0 0 1 -1 0 0 0 0 0

0 0 0 0 0 1 0 -1 0 0

0 0 0 0 0 0 1 -1 0 0

Since the first four vertices v0, v1, v2 and v3 are in V0 , we have φ0(vi) = 1 and φ1(vi) = 0 ,
hence the corresponding points of the Gorenstein cone take the form (1, 0, vi) for i = 0, . . . , 3.
The next four vertices v4, v5, v6 and v7 are in V1 , we have φ0(vi) = 0 and φ1(vi) = 1 ,
hence the corresponding points of the Gorenstein cone take the form (0, 1, vi) for i = 4, . . . , 7.
Finally, the origin always belongs to every part of the nef partition, hence it appears as often
as the codimension which here is r = 2 . So p8 = 0 and p9 = 0 . Once with φ0(p8) = 0 and
φ1(p8) = 1 and once with φ0(p9) = 1 and φ1(p9) = 0 .

6.4.24 -d*

The option -d*, where * is an integer m = 0, 1, 2, returns the points of the Gorenstein cones
C ⊂ M̃R associated to the nef partitions of length r of the polytope ∇∗ ⊂ MR. For the
notation on Gorenstein cones see Section 6.2, in particular (6.3) for the polytope ∇∗. This
option can be used to determine the polytope ∇∗ for each of the nef partitions of the given
polytope ∆∗. The polytope ∇∗ can then be further analyzed with poly.x.

The integer m triggers the same output format as for the option -g* in Section 6.4.23,
The default value is m = 1. The option -d2 automatically sets the flag -p.

The following example illustrates this option. We consider complete intersections of codi-
mension 2 in P

2 × P
1 × P

2 discussed in [45]. For more details on the nef partitions see the
example in Section 6.3 and Section 6.4.23.

palp$ nef.x -N -d2

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 8

Type the 40 coordinates as dim=5 lines with #pts=8 colums:

1 0 -1 0 0 0 0 0

0 1 -1 0 0 0 0 0

0 0 0 1 -1 0 0 0

0 0 0 0 0 1 0 -1

0 0 0 0 0 0 1 -1

M:300 18 N:9 8 codim=2 #part=15

7 63 Points of dual PG: (nv=27)

1 0 1 0 0 1 1 1 ...

0 1 0 1 1 0 0 0 ...

52

-1 0 1 1 0 -1 -1 -1 ...

-1 1 -1 0 1 1 1 -1 ... [63-8=55 more points]

0 1 0 1 -1 0 0 0 ...

-1 0 -1 0 0 1 -1 -1 ...

-1 1 1 1 1 -1 -1 1 ...

[...]

For each of the 11 nef partitions of the input polytope ∆∗ we get a 7-dimensional dual
Gorenstein cone C from which the points of the polytope ∇∗ can be read off by omitting the
first two entries of each column, cf (6.4). The numbers of points and vertices of ∇∗ depend
on which of the nef partitions is considered. The nef partition of interest in [45] was P:8. The
corresponding output of -d2 is

7 40 Points of dual PG: (nv=12)

0 0 1 1 1 0 0 0 ...

1 1 0 0 0 1 1 1 ...

0 0 -1 2 -1 0 0 0 ...

0 0 2 -1 -1 0 0 0 ... [40-8=32 more points]

0 1 0 0 0 1 1 0 ...

-1 -1 0 0 0 2 -1 -1 ...

-1 2 0 0 0 -1 -1 2 ...

We see that the polytope ∇∗ has 39 points (the interior point appears twice) and 12 vertices.
Let e1, . . . , e5 be the standard basis of R5. Let v̌0, . . . , v̌11 denote the vertices of the polytope
∇∗. with

v̌0 = −e4 − e5, v̌1 = e3 − e4 + 2e5, v̌2 = −e1 + 2e2,

v̌3 = 2e1 − e2, v̌4 = −e1 − e2, v̌5 = e3 + 2e4 − e5,

v̌6 = e3 − e4 − e5, v̌7 = −e4 + 2e5, v̌8 = −e1 + 2e2 − e3,

v̌9 = 2e1 − e2 − e3, v̌10 = −e1 − e2 − e3, v̌11 = 2e4 − e5.

From the first two rows of the above output we can read off the nef partition qV = qV0 ∪ qV1 of
∇∗:

qV0 = 〈v̌2, v̌3, v̌4, v̌8, v̌9, v̌10〉, qV1 = 〈v̌0, v̌1, v̌5, v̌6, v̌7, v̌11〉.

We can check this by feeding the vertices back into nef.x with the options -N and -Lv.

palp$ nef.x -N -Lv

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

5 12

Type the 60 coordinates as dim=5 lines with #pts=12 colums:

0 0 -1 2 -1 0 0 0 -1 2 -1 0

0 0 2 -1 -1 0 0 0 2 -1 -1 0

0 1 0 0 0 1 1 0 -1 -1 -1 0

-1 -1 0 0 0 2 -1 -1 0 0 0 2

-1 2 0 0 0 -1 -1 2 0 0 0 -1

M:24 15 N:39 12 codim=2 #part=2

5 12 Vertices in N-lattice:

0 0 -1 2 -1 0 0 0 -1 2 -1 0

0 0 2 -1 -1 0 0 0 2 -1 -1 0

0 1 0 0 0 1 1 0 -1 -1 -1 0

53

-1 -1 0 0 0 2 -1 -1 0 0 0 2

-1 2 0 0 0 -1 -1 2 0 0 0 -1

--

[linear relations]

H:19 19 [0] P:0 V:1 2 3 4 5 6 13 15 17 ... [degrees]

H:19 19 [0] P:1 V:2 3 4 8 9 10 16 17 18 ... [degrees]

np=2 d:0 p:0 0sec 0cpu

We see that the nef partition P:1 agrees with qV = qV0 ∪ qV1.

6.4.25 -G

The option -G works directly with Gorenstein cones which need not correspond to nef parti-
tions. The input polytope is interpreted as the support polytope ∆(C) of a reflexive Goren-
stein cone C, cf. Section 6.2. The index r of the cone is 2 by default and can be set to different
values with the -c option, cf. Section 6.4.11. The standard output contains information on
the support polytopes of the cone and the dual cone and the string–theoretic Hodge numbers
hij , 0 ≤ i, j ≤ dimC − 2r, see [44]. If the input does not correspond to a reflexive Goren-
stein cone of index r, no Hodge numbers and no N lattice data can be computed; as usual,
the number of facets is displayed instead. If the input corresponds to a reflexive Gorenstein
cone of an index different from r, this is treated like a non-reflexive case but with a warning
message.

palp$ nef.x -G

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 2

Type the 8 coordinates as #pts=4 lines with dim=2 columns:

0 0

0 1

1 0

1 1

M:4 4 N:4 4 H:[0] h0=0

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 1 1 1 1 1 1

3 1 1 1 1 1 1 M:56 6 N:6 6 H:20 [24]

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

7 1 1 1 2 3 3 3

7 1 1 1 2 3 3 3 M:154 18 F:9

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

7 1 1 2 2 2 3 3

7 1 1 2 2 2 3 3 M:116 18 N:9 9 H:2 70 [-136]

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

3 2

Type the 6 coordinates as #pts=3 lines with dim=2 columns:

0 0

1 0

0 1

54

Warning: Input has index 3, should be 2! M:3 3 F:3

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

or ‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

1 1 1 0 0 0 0 2 0 0 1 1 1 1

1 1 1 0 0 0 0 2 0 0 1 1 1 1 M:20 8 N:6 6 H:[0]

As the examples show, weight input d w1 ... wn requires w1 + . . . wn = rd; in other words
the weights qi = wi/d add up to r rather than to 1 as in the standard case. See [39] for more
information on how weight systems determine Gorenstein cones.

nef.x -G cannot be combined with all of the other options. Nevertheless -N swaps the
lattices M and N as usual; -H, -S, -T work as expected; -t works (without it no time
information is given); -c* determines the index; -R displays the vertices of the input polytope
if the cone is not reflexive of index r; -V displays the vertices of the support polytope of the
dual (N lattice) cone; -g, -d display the full sets of points of the support polytopes in the
lattices N or M , respectively (here no numbers can be specified with these options).

7 mori.x

The main purpose of mori.x is the computation of the Mori cone of toric varieties given
by star triangulations of reflexive polytopes, which correspond to crepant subdivisions of the
associated fans. The program is able to perform such triangulations for four–dimensional poly-
topes with up to three non–vertex points if the secondary fan is at most three–dimensional.
The program can also be used with a known triangulation as its input starting from PALP
release 2.1. This option, which was not contained in PALP 2.0 as described in [21], works for
arbitrary dimensions.

7.1 General aspects of mori.x

We distinguish two types of functionalities of mori.x. The first kind yields information
about the appropriately resolved ambient space (see options -g, -I, -m, -P, -K below).
This includes the Stanley-Reisner (SR) ideal (with -g) as well as specific information on
the geometry of the lattice polytope that determines the ambient toric variety: incidence
structure of the facets (-I), IP-simplices (-P) and subdivisions of the fan (-g); furthermore,
the Oda-Park algorithm [46, 47] is used to find the Mori cone of the ambient space (-m).
The second kind of functionalities deals with the intersection ring (-i, -t) and topological
quantities (-b, -c, -d) of the embedded hypersurface. They are determined with the help of
SINGULAR [17], a computer algebra system for polynomial computations. Correspondingly,
the options -b, -i, -c, -t, -d (as well as -a, -H, see below) need SINGULAR to be
installed.

The generators of the Mori cone are given in terms of their intersections with the toric
divisors. For singular toric varieties, the Picard group of Cartier divisors is a non-trivial
subgroup of the Chow group, which contains the Weil divisors. Hence one can consider the
Kähler cone, which is dual to the Mori cone, as a cone in the vector space spanned by the
elements of either the Picard or the Chow group. The program mori.x only deals with
simplicial toric varieties, for which the Picard group is always a finite index subgroup of the
Chow group [22, 23]. Hence the Cartier divisors are integer multiples of the Weil divisors and
this ambiguity does not arise.

55

Starting with PALP 2.1, mori.x affords two distinct modes of operation. If used with
the option -M arbitrary reflexive polytopes of any dimension can serve as input (at least in
principle), see section 7.2.16 for details. Without -M the program only works if the input
polytope can be triangulated by mori.x or if it does not require triangulation, as we will
outline in the following sections.

As described in [21], mori.x can perform star triangulations of certain four–dimensional
reflexive polytopes. This operation was designed for the CY hypersurface case. Generic CY
hypersurfaces avoid point-like singularities of the ambient space as well as divisors that cor-
respond to interior points of facets. Consequently, the algorithm performs star triangulations
only up to such interior points.

Polytopes can be triangulated by subdividing the secondary fans of its non-simplicial
facets [48, 49]. This triangulation algorithm is implemented in mori.x for polytopes with up
to three points that are neither vertices nor interior to the polytope or one of its facets; this
implies that the secondary fan of any facet can be at most three–dimensional. The program
exits with a warning message if the subdivision is not properly completed.

As the dimension of the secondary fan corresponding to a facet grows with the number of
points in the facet, this limitation tends to become relevant for toric varieties for which h1,1

is large: h1,1 increases with the number of points on the polytope and polytopes with many
points are more likely to have facets containing many points.

Complete triangulations of arbitrary polytopes can be performed programs such as TOP-
COM [16], which is also included in the open source mathematics software system Sage [18].
Sage also contains various tools for handling toric varieties. The triangulations performed in
mori.x are attuned to the case of three-dimensional CY hypersurfaces. This means, in partic-
ular, that interior points of facets are ignored: one must use -M to avoid this. For small Picard
numbers, mori.x is hence faster than programs which perform a complete triangulation.

If a polytope of arbitrary dimension has only simplicial facets whose only lattice points are
its vertices and possibly interior points, it does not require any triangulation. Hence mori.x

can also handle such cases without -M.
With the option -H the program can also analyze arbitrary hypersurfaces embedded in

the ambient toric varieties. It is capable of computing the intersection ring and certain
characteristic classes. Here the omission of interior points of facets, which happens as a
consequence of mori.x’s triangulation algorithm, may introduce severe singularities which
often result in non–integer intersection numbers. There is a warning if there are indeed
points interior to facets; in such a case it is probably better to repeat the computation with
the combination -HM.

The help screen provides essential information about all the functionalities of the program:

palp$ mori.x -h

This is ‘‘mori.x’’:

star triangulations of a polytope P* in N

Mori cone of the corresponding toric ambient spaces

intersection rings of embedded (CY) hypersurfaces

Usage: mori.x [-<Option-string>] [in-file [out-file]]

Options (concatenate any number of them into <Option-string>):

-h print this information

-f use as filter

-g general output: triangulation and Stanley-Reisner ideal

-I incidence information of the facets (ignoring IPs of facets)

56

-m Mori generators of the ambient space

-P IP-simplices among points of P* (ignoring IPs of facets)

-K points of P* in Kreuzer polynomial form

-b arithmetic genera and Euler number

-i intersection ring

-c Chern classes of the (CY) hypersurface

-t triple intersection numbers

-d topological information on toric divisors &

del Pezzo conditions

-a all of the above except h, f, I and K

-D lattice polytope points of P* as input (default CWS)

-H arbitrary (also non-CY) hypersurface

‘H = c1*D1 + c2*D2 + ...’ input: coefficients ‘c1 c2 ...’

-M Stanley-Reisner ideal and Mori generators with an

arbitrary triangulation as input; must be combined with -D

Input: 1) standard: degrees and weights

‘d1 w11 w12 ... d2 w21 w22 ...’

2) alternative (use -D): ‘d np’ or ‘np d’

(d=Dimension, np=#[points]) and (after newline) np*d

coordinates

Output: as specified by options

Following PALP’s notation we refer to the M lattice polytope which determines the CY
hypersurface as P ; consequently its dual, which gives rise to the fan of the ambient toric
variety, is P ∗.

As PALP always interprets the input as P ⊂ MR unless some option modifies this behavior,
matrix input of P ∗ ⊂ NR requires the option -D. In order to avoid errors, matrix input is not
allowed unless this option is set. If only P but not P ∗ is known one can use poly.x -e to
obtain the latter.

7.2 Options of mori.x

This section contains a detailed description of the options listed in the help screen. If no flag
is specified, the program starts with the parameter -g. By default, the program considers
a CY hypersurface embedded in the ambient toric variety. The option -H has to be used in
order to consider non-CY hypersurfaces. Note that the options -b, -i, -c, -t, -d, -a,

-H need SINGULAR [17] to be installed.
Most options of mori.x produce output that is related to the points of P ∗ in a specific

order which can be determined by combining the desired functionality with the option -P

(see sec. 7.2.6 below). In order to avoid repeating this information for every option, we now
present an example that will be used for many of the options below:

palp$ mori.x -P

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’:

8 4 1 1 1 1 0 6 3 1 0 1 0 1

4 8 points of P* and IP-simplices

-1 0 0 0 1 3 1 0

0 0 0 1 0 -1 0 0

-1 1 0 0 0 3 1 0

1 0 1 0 0 -4 -1 0

------------------------------ #IP-simp=2

57

4 1 0 1 1 1 8=d codim=0

3 0 1 1 0 1 6=d codim=1

The output above the dashed line just means that P ∗ has the lattice points4

p1 =




−1
0

−1
1


 , p2 =




0
0
1
0


 , · · · , p7 =




1
0
1

−1


 , p8 =




0
0
0
0


 (7.1)

and the last two lines encode the facts 4p1 + p2 + p4 + p5 + p6 = 0, 3p1 + p3 + p4 + p6 = 0.
Note how the dashed line proceeds only up to p6. This is because mori.x always ignores
the origin, and, if used without -M, also ignores points that are interior to facets: p7 =
(p2+ p4+ p5+ p6)/4 = (p3+ p4+ p6)/3 lies inside the facet with vertices p2, p3, p4, p5, p6. The
reader is invited to check that the same example with mori.x -PM results in a dashed line
below all points except the origin.

7.2.1 -h

This option prints the help screen.

7.2.2 -f

This parameter suppresses the prompt of the command line. This is useful if one wants to
build pipelines or shorten the input; e.g. our standard example (7.1) can be entered as

palp$ echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -fP

4 8 points of P* and IP-simplices

...

7.2.3 -g

This triggers the general output. First, the triangulation data of the facets is displayed. The
number of triangulated simplices is followed by the incidence structure of the simplices. The
incidence information for each simplex is encoded in terms of a bit sequence (cf. sec. 2.3.3):
there is a digit for each relevant polytope point; a 1 denotes that the point belongs to the
simplex. Second, the SR ideal is displayed: the number of elements of the ideal is followed
by its elements. Each element is denoted by a bit sequence as above.

palp$ echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -fg

8 Triangulation

110101 111100 101011 101110 100111 111001 001111 011101

2 SR-ideal

010010 101101

9 Triangulation

110101 111100 101011 101110 100111 111001 010111 011011 011110

2 SR-ideal

110010 001101

4Here the index starts at 1 instead of 0 as it is standard in PALP. This shift is needed to match the counting
of toric divisor classes displayed in certain outputs of mori.x and hence avoids confusion.

58

The program performs the two possible triangulations of the facet 〈23456〉, which is the only
non–simplicial one (see section 7.2.4). The last two bit sequences of the first result describe
the simplices 〈2̂5346〉, whereas the second triangulation gives the three simplices 〈23̂465〉 (in
this notation the hat indicates that one of the points is dropped). Nevertheless, the two
resolutions give the same CY intersection polynomial.5

7.2.4 -I

The incidence structure of the facets of the polytope P ∗ is displayed. Interior points of the
facets are neglected.

palp$ echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -fI

Incidence: 110101 111100 011111 101011 101110 100111 111001

The incidence data show the intersections of p1, . . . , p6 (ignoring p7, p8!) with the seven
facets. The third facet contains the five points p2, . . . , p6, hence it is not simplicial and needs
to be triangulated. See section 2.3.3 for more details on the representation of incidences as
bit sequences.

7.2.5 -m

The Mori cone generators of the ambient space are displayed in the form of a matrix.6 Each
row corresponds to a generator. The entries of each row are the intersections of the generator
with the toric divisor classes. The Oda-Park algorithm is used to compute the generators.
Furthermore, the incidence structure between the generators of the Mori cone and its facets
is displayed. For the standard example this takes the following form.

palp$ echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -fm

2 MORI GENERATORS / dim(cone)=2

3 0 1 1 0 1 I:10

0 3 -4 -1 3 -1 I:01

2 MORI GENERATORS / dim(cone)=2

1 1 -1 0 1 0 I:10

0 -3 4 1 -3 1 I:01

The Mori cone is two-dimensional, so that its facets can be identified with the generators.
This explains the trivial incidence structure.

Let us consider another simple example, a hypersurface in P
2 × P

1 × P
1.

palp$ mori.x -m

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’:

3 1 1 1 0 0 0 0 2 0 0 0 1 1 0 0 2 0 0 0 0 0 1 1

3 MORI GENERATORS / dim(cone)=3

0 0 0 1 1 0 0 I:110

1 1 0 0 0 0 1 I:101

0 0 1 0 0 1 0 I:011

5This fact suggests that the two resolutions give rise to the same CY hypersurface. Indeed, simply connected
CY threefolds are completely determined up to diffeomorphisms by their Hodge numbers, intersection rings
and second Chern classes [15, 33].

6As divisors corresponding to interior points of facets do not intersect a CY hypersurface, such divisors are
neglected in the computation of the Mori cone of the ambient space.

59

The Mori cone generators can easily be seen to be dual to the hyperplane sections. Now, the
Mori cone is three-dimensional, so that each of its facets contains two generators. Let us, for
instance, consider the incidence structure between the first generator and the three facets of
the Mori cone. Here, the string I:110 tells that the vector lies on the first and second facets
but does not intersect the third one.

For an example with a more complicated structure of the Mori cone see section 7.2.16.

7.2.6 -P

First a list of lattice points of P ∗ is displayed in the following manner. If -P is combined with
both -M and -D, the list is just the input provided by the user, in the same order except for
the fact that the lattice origin comes at the end of the list. In all other cases the complete
list of lattice points of P ∗ is given in the following order:

1. vertices (with -D in the order provided by the user),
2. points not interior to the polytope or its facets,
3. points interior to facets,
4. the lattice origin.

Then a dashed line indicates which points are ‘relevant’: all points except for the origin in the
case of -M, but not points interior to facets otherwise. Finally the IP-simplices with vertices
among these relevant points are displayed.

The output for the standard example can be found above equation (7.1). The following
example features all types of lattice points:

palp$ echo ’16 8 4 2 1 1’ | mori.x -fP

4 9 points of P* and IP-simplices

-1 0 0 2 0 0 0 1 0

-1 0 0 1 2 0 1 1 0

0 0 2 -1 1 1 1 0 0

0 1 1 0 -1 1 0 0 0

----------------------------------- #IP-simp=3

8 1 1 4 2 0 0 16=d codim=0

4 0 0 2 1 1 0 8=d codim=1

2 0 0 1 0 0 1 4=d codim=2

p1, . . . , p5 are vertices, p6, p7 further relevant points, but p8 = −p1 = (p2 + p3 + 4p4 + 2p5)/8
is interior to the facet spanned by p2, . . . , p5. Note that the ordering of the CWS input is not
obeyed by the output of lattice points. Once the order is displayed, however, it is fixed and
determines the labeling of toric divisors in any further output.

7.2.7 -K

The Kreuzer polynomial7 of PALP’s representation of P ∗ is displayed. It encodes lattice
polytope points in a compact form. The number of variables equals the dimension of the
polytope. Each lattice point gives rise to a Laurent monomial in which the exponents of the
variables are the coordinates. Vertices and non-vertices are distinguished by coefficients ‘+’

7We named this output format after Maximilian Kreuzer, who designed it. This is an example of his
proverbial ability to eliminate unnecessary data redundancies and recast essential information in condensed
form.

60

and ‘−’ respectively. Points in the interior of facets are ignored. As this is closely connected
with the way mori.x works when used without -M, the combination -MK is not allowed.

palp$ echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -fK

KreuzerPoly=t_4/(t_1t_3)+t_3+t_4+t_2+t_1+t_1^3t_3^3/(t_2t_4^4);

intpts=1; Pic=2

A comparison with the output for -P, which can be found above equation (7.1), might
help for a better understanding of the present option.

Negative coordinates are always displayed by putting the variables in the denominator.
The number of points in the interior of facets is shown as intpts. The multiplicities of the
toric divisors are displayed as multd if they are greater than one. Furthermore, the Picard
number of the CY hypersurface is computed and printed as Pic.

7.2.8 -b

The zeroth and first arithmetic genera of the hypersurface are determined according to the
following formulas [50]:

χq(X) =
∑

p

(−1)php,q(X) =

∫

X

ch(Ωq(X))Td(X), q = 0, 1. (7.2)

where Ω0(X) = OX is the trivial bundle and Ω1(X) = T ∗X is the bundle of 1-forms, ch is
the corresponding Chern character, and Td(X) is the Todd class of X.

Furthermore the Euler characteristic is displayed. Here we compute it by means of the
intersection polynomial:

χ =

∫

X

cn . (7.3)

where cn is the top Chern class, n = dimX.
These formulas hold for arbitrary smooth hypersurfaces; in particular, they do not need

to be CY. Indeed, if X is CY, its Euler characteristic can also be computed by poly.x in
terms of polytope combinatorics. Compare the two Euler characteristics for a consistency
check.

Consider the K3 surface as a simple example:

palp$ echo ’4 1 1 1 1’ | mori.x -bf

SINGULAR -> Arithmetic genera and Euler number of the CY:

chi_0: 2 , chi_1: -20 [24]

As expected, the Euler characteristic is 24 and h1,1 = 20. Using the example discussed before
we find

palp$ echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -bf

SINGULAR -> Arithmetic genera and Euler number of the CY:

chi_0: 0 , chi_1: 126 [-252]

SINGULAR -> Arithmetic genera and Euler number of the CY:

chi_0: 0 , chi_1: 126 [-252]

Special care is needed in the interpretation of the results for non-CY hypersurfaces: the
triangulation algorithm might fail to make these varieties smooth, in which case the formulas
above do not hold and hence the output is misleading; see the description of the option -H

for more details.

61

7.2.9 -i

This option displays the intersection polynomial in terms of an integral basis of the toric
divisors. The coefficients of the monomials are the triple intersection numbers in this basis.
This option can also be used together with -H to perform this task for non-CY hypersurfaces.

palp$ echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -fi

SINGULAR -> divisor classes (integral basis J1 ... J2):

d1=J1+3*J2, d2=J1, d3=-J1+J2, d4=J2, d5=J1, d6=J2

SINGULAR -> intersection polynomial:

2*J1*J2^2+2*J2^3

SINGULAR -> divisor classes (integral basis J1 ... J2):

d1=J1+3*J2, d2=J1, d3=-J1+J2, d4=J2, d5=J1, d6=J2

SINGULAR -> intersection polynomial:

2*J1*J2^2+2*J2^3

d1, . . . , d6 denote the toric divisors corresponding to the lattice points p1, . . . , p6, cf. eq.
(7.1). There are two independent divisor classes. Indeed, mori.x expresses the intersection
polynomial in terms of the integral basis J1 = D2 = D5 and J2 = D4 = D6.

7.2.10 -c

The Chern classes of the hypersurface (CY or non-CY) are displayed in terms of an integral
basis of the toric divisors:

palp$ echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -fc

SINGULAR -> divisor classes (integral basis J1 ... J2):

d1=J1+3*J2, d2=J1, d3=-J1+J2, d4=J2, d5=J1, d6=J2

SINGULAR -> Chern classes of the CY-hypersurface:

c1(CY)= 0

c2(CY)= 10*J1*J2+12*J2^2

c3(CY)= -252 *[pt]

SINGULAR -> divisor classes (integral basis J1 ... J2):

d1=J1+3*J2, d2=J1, d3=-J1+J2, d4=J2, d5=J1, d6=J2

SINGULAR -> Chern classes of the CY-hypersurface:

c1(CY)= 0

c2(CY)= 10*J1*J2+12*J2^2

c3(CY)= -252 *[pt]

7.2.11 -t

The triple intersection numbers of the toric divisors are displayed. The form of this output8

is designed for further use in Mathematica [51]. Before computing the intersection ring for
our standard example (7.1), let us state some expectations. Inspection of the data of the
polytope reveals that it describes a K3 fibration with the fiber determined by the weight
system 6 3 1 1 1. There are only the two points p2, p5 outside the corresponding 3–plane, so
each of them must represent the generic fiber with self–intersection 0. In other words, the
self–intersections of d2 and d5 as well as d2 · d5 must all vanish. This is confirmed by the
following excerpt from the output:

8The pre-compiler command DijkEQ in the C file SingularInput.c controls the symbol ‘->’ in option -t.

62

echo ’8 4 1 1 1 1 0 6 3 1 0 1 0 1’ | mori.x -ft

SINGULAR -> triple intersection numbers:

d6^3->2,

d5*d6^2->2,

d4*d6^2->2,

d3*d6^2->0,

d2*d6^2->2,

d1*d6^2->8,

d5^2*d6->0,

d4*d5*d6->2,

d3*d5*d6->2,

d2*d5*d6->0,

d1*d5*d6->6,

d4^2*d6->2,

d3*d4*d6->0,

d2*d4*d6->2,

d1*d4*d6->8,

d3^2*d6->-2,

d2*d3*d6->2,

d1*d3*d6->2,

d2^2*d6->0,

d1*d2*d6->6,

d1^2*d6->30,

d5^3->0,

d4*d5^2->0,

d3*d5^2->0,

d2*d5^2->0,

d1*d5^2->0,

d4^2*d5->2,

d3*d4*d5->2,

d2*d4*d5->0,

d1*d4*d5->6,

d3^2*d5->2,

d2*d3*d5->0,

d1*d3*d5->6,

d2^2*d5->0,

d1*d2*d5->0,

d1^2*d5->18,

[...]

7.2.12 -d

This option displays topological data of the toric divisors restricted to the (CY or non-CY)
hypersurface. The Euler characteristics of the toric divisor classes and their arithmetic genera
are shown.

Furthermore, in the case of a three-dimensional hypersurface, the program checks the del
Pezzo property against two necessary conditions and analyses the mutual intersections of the
del Pezzo candididates. The number of del Pezzo candidates is displayed followed by their
type in parenthesis; furthermore, those among them that do not intersect other del Pezzo
candidates are listed.

63

For a del Pezzo divisor S of type n, the following equations should hold:

∫

S

c1(S)
2 = 9− n ,

∫

S

c2(S) = n+ 3 =⇒ χ0(S) =

∫

S

Td(S) = 1 . (7.4)

Here, Td(S) denotes the Todd class of S, which gives the zeroth arithmetic genus of S upon
integration. This test also allows to determine the type of the del Pezzo surface in question. A
second necessary condition comes from the fact that a del Pezzo surface is a two-dimensional
Fano manifold. Hence, the first Chern class of S integrated over all curves on S has to be
positive:

Di ∩ S ∩ c1(S) > 0 ∀Di : Di 6= S , Di ∩ S 6= 0 . (7.5)

This condition would be sufficient if we were able to access all curves of the hypersurface.
In our construction, however, we can only check for curves induced by toric divisors. This
functionality was added to carry out the analysis of base manifolds for elliptic fibrations in
[52].

Consider the following example: it is well-known that the del Pezzo surface dP6 can be
realized as a homogeneous polynomial of degree 3 in CP

3. Hence a Calabi-Yau hypersurface
in a toric variety with CWS

51 1 1 1 1 0

2 0 0 0 0 1 1

i.e. a CP
1 fibration over CP3 contains a dP6: setting the last coordinate z6 to zero forces all

terms to be of the form z25P3(z1, . . . , z4), where P3(z1, . . . , z4) is a homogeneous polynomial of
degree 3 in z1, . . . , z4. We may set z5 to 1 by using the second C

∗ action, so that the divisor
D6 corresponds to a homogenous polynomial of degree 3 in CP

3, i.e. a dP6.
This is confirmed by

palp$ mori.x -d

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’:

5 1 1 1 1 1 0 2 0 0 0 0 1 1

SINGULAR -> topological quantities of the toric divisors:

Euler characteristics: 46 46 46 9 46 55

Arithmetic genera: 4 4 4 1 4 5

dPs: 1 ; d4(6) nonint: 1 ; d4

Note that Palp has exchanged the ordering of the divisors, so that the dP6 is now given by
D4. This divisor does not intersect any other del Pezzo as it is the only del Pezzo candidate
in this example.

7.2.13 -a

This is a shortcut for -gmPbictd.

7.2.14 -D

An alternative way to provide the input is to type lattice polytope points of P ∗ directly. In
this case, one has to use the parameter -D. Let us reconsider the example of sec. 7.2.6:

64

palp$ mori.x -DP

‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 5

Type the 20 coordinates as dim=4 lines with #pts=5 columns:

-1 2 0 0 0

-1 1 2 0 0

0 -1 1 0 2

0 0 -1 1 1

4 9 points of P* and IP-simplices

-1 2 0 0 0 0 0 1 0

-1 1 2 0 0 0 1 1 0

0 -1 1 0 2 1 1 0 0

0 0 -1 1 1 1 0 0 0

----------------------------------- #IP-simp=3

8 4 2 1 1 0 0 16=d codim=0

4 2 1 0 0 1 0 8=d codim=1

2 1 0 0 0 0 1 4=d codim=2

Note how the order of the vertices corresponds to that of the input (cf. section 7.2.6).

7.2.15 -H

Using this option, one can specify a (non-CY) hypersurface. The user determines the hy-
persurface divisor class H =

∑
i ciDi in terms of the toric divisor classes Di by typing its

coefficients ci. The hypersurface can then be analyzed by combining -H with other options,
as described above. Just using -H, the program runs -Hb.

The reader is warned: smoothness is not guaranteed anymore, so that the intersection
numbers can become fractional. Some choices of the hypersurface equation may intersect
singularities not resolved by the triangulation. Consider e.g. the hypersurface determined by
the divisor class H = D1+D6 in our example (7.1). Remember that the order in which mori.x

expects the coefficients of the hypersurface divisor class is fixed by the polytope matrix and
not by the CWS input. Hence, the correct input for H is the string 1 0 0 0 0 1.

palp$ mori.x -H

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’

8 4 1 1 1 1 0 6 3 1 0 1 0 1

WARNING: there is 1 facet-IP ignored in the triangulation.

This may lead to unresolved singularities in the hypersurface.

Type the 6 (integer) entries for the hypersurface class:

1 0 0 0 0 1

Hypersurface degrees: (5 4)

Hypersurface class: 1*d1 1*d6

SINGULAR -> Arithmetic genera and Euler number of H:

chi_0: 29/27 , chi_1: 128/27 [-22/3]

To calculate these quantities, the program determines the characteristic classes of the divisors
using adjunction. It then performs the appropriate integration with the help of the triple
intersection numbers. The fractional results of the arithmetic genera and the Euler number
in our example indicate that the intersection polynomial has fractional entries. This happens
because the program introduces a singularity into the ambient toric variety which descends
to the hypersurface H. It is therefore much better to combine -H with -M:

65

palp$ mori.x -HM

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’:

8 4 1 1 1 1 0 6 3 1 0 1 0 1

4 8

-1 0 0 0 1 3 1 0

0 0 0 1 0 -1 0 0

-1 1 0 0 0 3 1 0

1 0 1 0 0 -4 -1 0

‘#triangulations’:

1

1 triangulations:

12 1111000 1110010 1101010 0111001 0110011 0101011

1011100 1010110 1001110 0011101 0010111 0001111

Type the 7 (integer) entries for the hypersurface class:

1 0 0 0 0 1 0

Hypersurface degrees: (5 4 1)

Hypersurface class: 1*d1 1*d6

SINGULAR -> Arithmetic genera and Euler number of H:

chi_0: 1 , chi_1: 3 [-4]

As a second example, consider the quadric in CP
3:

palp$ mori.x -H

Degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’:

4 1 1 1 1

Type the 4 (integer) entries for the hypersurface class:

2 0 0 0

Hypersurface degrees: (2)

Hypersurface class: 2*d1

SINGULAR -> Arithmetic genera and Euler number of H:

chi_0: 1 , chi_1: -2 [4]

The hypersurface is smooth in this case, so that the arithmetic genera and the Euler number
are those of CP1 × CP

1. Of course, one needs to independently check smoothness in order
to rely on the output, as the integrality of the arithmetic genera alone is not sufficient to
conclude that the hypersurface is non-singular.

7.2.16 -M

Option -M allows polytopes of (in principle) arbitrary dimensions, but expects the triangula-
tions to be provided by the user; it can be combined with any other option except for -K. As
the Mori cone is analysed with PALP’s routines, the parameter POLY Dmax must possibly be
adjusted for this; see sec. 2.3.4.

This functionality is useful, for instance, when mori.x fails to triangulate the polytope by
itself. This happens whenever the dimension of the polytope is different from four, or when
the polytope contains more than three lattice points that are neither vertices nor (facet–)IPs.
Fortunately, there are programs capable of efficiently performing complete triangulations of
arbitrary polytopes [16, 18]; the user can redirect their output as an input for mori.x to
determine the Mori generators of the ambient space. Other situations where -M is useful
arise whenever we prefer to keep control over the lattice points involved in the triangulation,
rather than accept mori.x’s convention of omitting precisely the interior points of facets from
a completed list; this is particularly relevant if -M is combined with -H.

66

After the usual polytope input, P ∗ is displayed in the following manner. If the input is of
CWS type, all points of P ∗ are given in mori.x’s standard order (see section 7.2.6). If matrix
input is used via -D, the points entered by the user are displayed again in the same order,
but with the origin appended (if the origin is accidentally entered somewhere in the point
list, it is swapped with the last point in the list); possible further polytope points are ignored
by the program, hence singularities can be introduced if desired. Then the user is asked for
the number of triangulations to be analysed, and afterwards each triangulation should be
entered as a line starting with the number of simplices involved in the triangulation, followed
by bit sequences encoding these simplices. The number of bits in each sequence should be
the number of non–zero lattice points in the displayed list, with 1’s indicating that the point
belongs to the simplex, and 0’s otherwise.

An application to our standard example (7.1) was already demonstrated in section 7.2.15.
Consider also the following two-dimensional polytope:

palp$ mori.x -MDgm

‘#lines #columns’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

2 7

Type the 14 coordinates as dim=2 lines with #pts=7 columns:

1 0 -1 -1 -1 -1 0

0 1 2 1 0 -1 -1

2 8

1 0 -1 -1 -1 -1 0 0

0 1 2 1 0 -1 -1 0

‘#triangulations’:

1

1 triangulations:

7 1100000 0110000 0011000 0001100 0000110 0000011 1000001

14 SR-ideal

0000101 0001001 0001010 0010001 0010010 0010100 0100001 0100010

0100100 0101000 1000010 1000100 1001000 1010000

6 MORI GENERATORS / dim(cone)=5

1 -2 1 0 0 0 0 I:0111011

0 1 -1 1 0 0 0 I:1101101

0 0 1 -2 1 0 0 I:1110110

0 0 0 1 -2 1 0 I:1011111

0 0 0 0 1 -1 1 I:1100011

1 0 0 0 0 1 -1 I:0111100

Since P ∗ is just a polygon there is only one maximal triangulation of its boundary. For this
reason we have typed 1 after ‘#triangulations’:. The triangulation has seven simplices,
which are just the line segments along the circumference of the polygon. For instance, the
string 0011000 denotes the third simplex containing the points denoted by the third and
fourth columns of the polytope matrix, i.e. the points p3 = (−1, 2) and p4 = (−1, 1).

As the Mori cone encodes linear relations among seven points in d = 2, it is five-
dimensional and has four-dimensional facets; there are seven of them, as the lengths of the bit
sequences after I: indicate. There are six generators. Consider the matrix of incidences whose
rows are preceded by I:. The second column reads 111011, i.e. on the second facet of the
Mori cone lie five generators. It is easily checked that they satisfy m1+2m2+m3 = m5+m6.
All other facets contain instead four generators and are hence simplicial.

67

Acknowledgments

This work is based on the legacy of Maximilian Kreuzer who has been an inspiration for all
of us. We are grateful to Benjamin Nill for providing information on several PALP options
and for useful remarks. J. Knapp thanks the Vienna University of Technology for hospitality.
N.-O. Walliser thanks the École Polytechnique, Paris for hospitality. The work of A.P.Braun
was supported by the FWF under grant I192. The work of J. Knapp was supported by World
Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

References

[1] A. Klemm and R. Schimmrigk, “Landau-Ginzburg string vacua,”
Nucl.Phys. B411 (1994) 559–583, arXiv:hep-th/9204060 [hep-th].

[2] M. Kreuzer and H. Skarke, “No mirror symmetry in Landau-Ginzburg spectra!,”
Nucl.Phys. B388 (1992) 113–130, arXiv:hep-th/9205004 [hep-th].

[3] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in
toric varieties,” J. Algebraic Geom. 3 no. 3, (1994) 493–535,
arXiv:alg-geom/9310003 [alg-geom].

[4] M. Kreuzer and H. Skarke, “On the classification of reflexive polyhedra,”
Commun.Math.Phys. 185 (1997) 495–508, arXiv:hep-th/9512204 [hep-th].

[5] H. Skarke, “Weight systems for toric Calabi-Yau varieties and reflexivity of Newton
polyhedra,” Mod.Phys.Lett. A11 (1996) 1637–1652,
arXiv:alg-geom/9603007 [alg-geom].

[6] A. Avram, M. Kreuzer, M. Mandelberg, and H. Skarke, “Searching for K3 fibrations,”
Nucl.Phys. B494 (1997) 567–589, arXiv:hep-th/9610154 [hep-th].

[7] M. Kreuzer and H. Skarke, “Calabi-Yau four folds and toric fibrations,”
J.Geom.Phys. 26 (1998) 272–290, arXiv:hep-th/9701175 [hep-th].

[8] A. Avram, M. Kreuzer, M. Mandelberg, and H. Skarke, “The Web of Calabi-Yau
hypersurfaces in toric varieties,” Nucl.Phys. B505 (1997) 625–640,
arXiv:hep-th/9703003 [hep-th].

[9] M. Kreuzer and H. Skarke, “Classification of reflexive polyhedra in three-dimensions,”
Adv.Theor.Math.Phys. 2 (1998) 847–864, arXiv:hep-th/9805190 [hep-th].

[10] M. Kreuzer and H. Skarke, “Complete classification of reflexive polyhedra in
four-dimensions,” Adv.Theor.Math.Phys. 4 (2002) 1209–1230,
arXiv:hep-th/0002240 [hep-th].

[11] M. Kreuzer, E. Riegler, and D. A. Sahakyan, “Toric complete intersections and
weighted projective space,” J.Geom.Phys. 46 (2003) 159–173,
arXiv:math/0103214 [math-ag].

68

http://dx.doi.org/10.1016/0550-3213(94)90462-6
http://arxiv.org/abs/hep-th/9204060
http://dx.doi.org/10.1016/0550-3213(92)90547-O
http://arxiv.org/abs/hep-th/9205004
http://arxiv.org/abs/alg-geom/9310003
http://dx.doi.org/10.1007/s002200050100
http://arxiv.org/abs/hep-th/9512204
http://dx.doi.org/10.1142/S0217732396001636
http://arxiv.org/abs/alg-geom/9603007
http://dx.doi.org/10.1016/S0550-3213(97)00214-9
http://arxiv.org/abs/hep-th/9610154
http://dx.doi.org/10.1016/S0393-0440(97)00059-4
http://arxiv.org/abs/hep-th/9701175
http://dx.doi.org/10.1016/S0550-3213(97)00582-8
http://arxiv.org/abs/hep-th/9703003
http://arxiv.org/abs/hep-th/9805190
http://arxiv.org/abs/hep-th/0002240
http://dx.doi.org/10.1016/S0393-0440(02)00124-9
http://arxiv.org/abs/math/0103214

[12] A. Klemm, M. Kreuzer, E. Riegler, and E. Scheidegger, “Topological string amplitudes,
complete intersection Calabi-Yau spaces and threshold corrections,”
JHEP 0505 (2005) 023, arXiv:hep-th/0410018 [hep-th].

[13] E. Riegler, Toric Geometry and Mirror Symmetry in String Theory. PhD thesis,
Technische Universität Wien, 2004.
http://hep.itp.tuwien.ac.at/~kreuzer/pra/RieglerPhD.pdf.

[14] http://en.wikipedia.org/wiki/Palp.

[15] C. T. C. Wall, “Classification problems in differential topology. V. On certain
6-manifolds,” Invent. Math. 1 (1966), 355-374; corrigendum, ibid 2 (1966) 306.

[16] J. Rambau, “TOPCOM: triangulations of point configurations and oriented matroids,”
in Mathematical software (Beijing, 2002), A. M. Cohen, X.-S. Gao, and N. Takayama,
eds., pp. 330–340. World Sci. Publ., River Edge, NJ, 2002.
http://www.zib.de/PaperWeb/abstracts/ZR-02-17.

[17] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular 3-1-4 — A
computer algebra system for polynomial computations,”.
http://www.singular.uni-kl.de.

[18] W. Stein et al., Sage Mathematics Software (Version 4.8). The Sage Development
Team, 2012. http://www.sagemath.org.

[19] various authors, PALP wiki.
http://palp.itp.tuwien.ac.at/wiki/index.php/Main_Page.

[20] M. Kreuzer and H. Skarke, “PALP: A Package for analyzing lattice polytopes with
applications to toric geometry,” Comput.Phys.Commun. 157 (2004) 87–106,
arXiv:math/0204356 [math-sc].

[21] A. P. Braun and N.-O. Walliser, “A New offspring of PALP,”
arXiv:1106.4529 [math.AG].

[22] W. Fulton, Introduction to toric varieties, vol. 131 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 1993.

[23] T. Oda, Convex bodies and algebraic geometry, vol. 15 of Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1988.

[24] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, vol. 124 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2011.

[25] H. Skarke, “String dualities and toric geometry: an introduction,”
Chaos Solitons Fractals 10 no. 2-3, (1999) 543–554,
arXiv:hep-th/9806059 [hep-th].

[26] M. Kreuzer, “Toric geometry and Calabi-Yau compactifications,” Ukr.J.Phys. 55
(2010) 613, arXiv:hep-th/0612307 [hep-th].

69

http://dx.doi.org/10.1088/1126-6708/2005/05/023
http://arxiv.org/abs/hep-th/0410018
http://hep.itp.tuwien.ac.at/~kreuzer/pra/RieglerPhD.pdf
http://en.wikipedia.org/wiki/Palp
http://www.zib.de/PaperWeb/abstracts/ZR-02-17
http://www.singular.uni-kl.de
http://palp.itp.tuwien.ac.at/wiki/index.php/Main_Page
http://dx.doi.org/10.1016/S0010-4655(03)00491-0
http://arxiv.org/abs/math/0204356
http://arxiv.org/abs/1106.4529
http://dx.doi.org/10.1016/S0960-0779(98)00161-1
http://arxiv.org/abs/hep-th/9806059
http://arxiv.org/abs/hep-th/0612307

[27] M. Kreuzer and H. Skarke, PALP: a Package for Analyzing Lattice Polytopes.
http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYpalp.html.

[28] M. Kreuzer and H. Skarke, “Reflexive polyhedra, weights and toric Calabi-Yau
fibrations,” Rev.Math.Phys. 14 (2002) 343–374, arXiv:math/0001106 [math-ag].

[29] C. Vafa, “String Vacua and Orbifoldized L-G Models,” Mod.Phys.Lett. A4 (1989) 1169.

[30] K. A. Intriligator and C. Vafa, “Landau-Ginzburg Orbifolds,”
Nucl.Phys. B339 (1990) 95–120.

[31] M. Kreuzer and B. Nill, “Classification of toric Fano 5-folds,”
Adv. Geom. 9 no. 1, (2009) 85–97, arXiv:math/0702890 [math].

[32] M. Kreuzer and B. Nill, Classification of toric Fano 5-folds (data supplement), 2007.
http://hep.itp.tuwien.ac.at/~kreuzer/CY/math/0702890/.

[33] V. Batyrev and M. Kreuzer, “Constructing new Calabi-Yau 3-folds and their mirrors
via conifold transitions,” Adv. Theor. Math. Phys. 14 no. 3, (2010) 879–898,
arXiv:0802.3376 [math.AG].
http://projecteuclid.org/getRecord?id=euclid.atmp/1309526468.

[34] V. Batyrev and M. Kreuzer, Constructing new Calabi-Yau 3-folds and their mirrors via
conifold transitions (data supplement), 2008.
http://hep.itp.tuwien.ac.at/~kreuzer/CY/math/0802/.

[35] V. Batyrev and M. Kreuzer, “Conifold degenerations of fano 3-folds as hypersurfaces in
toric varieties,” (2012) , arXiv:1203.6058 [math.AG].

[36] V. Batyrev, B. Nill, and M. Kreuzer, Fano hypersurfaces with conifold singularities
(data supplement), 2002.
http://hep.itp.tuwien.ac.at/~kreuzer/CY/math/Fano/Fano.html.

[37] M. Kreuzer, Reflexive2x.4d.gz (data file), 2002.
http://hep.itp.tuwien.ac.at/~kreuzer/CY/math/Fano/Fano.html.

[38] B. Nill, Gorenstein toric Fano varieties. PhD thesis, Universität Tübingen, 2005.
http://tobias-lib.uni-tuebingen.de/dbt/volltexte/2005/1888/.

[39] H. Skarke, “How to Classify Reflexive Gorenstein Cones,” arXiv:1204.1181 [hep-th].

[40] M. Kreuzer and H. Skarke, Calabi Yau data.
http://hep.itp.tuwien.ac.at/~kreuzer/CY/.

[41] L. Borisov, “Towards the Mirror Symmetry for Calabi-Yau Complete intersections in
Gorenstein Toric Fano Varieties ,” arXiv:alg-geom/9310001 [alg-geom].

[42] V. V. Batyrev and L. A. Borisov, “On Calabi-Yau complete intersections in toric
varieties,” arXiv:alg-geom/9412017 [alg-geom].

[43] V. Batyrev and B. Nill, “Combinatorial aspects of mirror symmetry,” in Integer points
in polyhedra—geometry, number theory, representation theory, algebra, optimization,
statistics, vol. 452 of Contemp. Math., pp. 35–66. Amer. Math. Soc., Providence, RI,
2008. arXiv:math/0703456 [math.CO].

70

http://hep.itp.tuwien.ac.at/~kreuzer/CY/CYpalp.html
http://dx.doi.org/10.1142/S0129055X0200120X
http://arxiv.org/abs/math/0001106
http://dx.doi.org/10.1142/S0217732389001350
http://dx.doi.org/10.1016/0550-3213(90)90535-L
http://dx.doi.org/10.1515/ADVGEOM.2009.005
http://arxiv.org/abs/math/0702890
http://hep.itp.tuwien.ac.at/~kreuzer/CY/math/0702890/
http://arxiv.org/abs/0802.3376
http://projecteuclid.org/getRecord?id=euclid.atmp/1309526468
http://hep.itp.tuwien.ac.at/~kreuzer/CY/math/0802/
http://arxiv.org/abs/1203.6058
http://hep.itp.tuwien.ac.at/~kreuzer/CY/math/Fano/Fano.html
http://hep.itp.tuwien.ac.at/~kreuzer/CY/math/Fano/Fano.html
http://tobias-lib.uni-tuebingen.de/dbt/volltexte/2005/1888/
http://arxiv.org/abs/1204.1181
http://hep.itp.tuwien.ac.at/~kreuzer/CY/
http://arxiv.org/abs/alg-geom/9310001
http://arxiv.org/abs/alg-geom/9412017
http://dx.doi.org/10.1090/conm/452/08770
http://arxiv.org/abs/math/0703456

[44] V. V. Batyrev and L. A. Borisov, “Mirror duality and string-theoretic Hodge numbers,”
Invent. Math. 126 no. 1, (1996) 183–203, arXiv:alg-geom/9509009 [alg-geom].

[45] V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, “Worldsheet Instantons and
Torsion Curves, Part B: Mirror Symmetry,” JHEP 0710 (2007) 023,
arXiv:0704.0449 [hep-th].

[46] T. Oda and H. S. Park, “Linear Gale transforms and Gel′fand-Kapranov-Zelevinskij
decompositions,” Tohoku Math. J. (2) 43 no. 3, (1991) 375–399.

[47] P. Berglund, S. H. Katz, and A. Klemm, “Mirror symmetry and the moduli space for
generic hypersurfaces in toric varieties,” Nucl.Phys. B456 (1995) 153–204,
arXiv:hep-th/9506091 [hep-th].

[48] L. J. Billera, P. Filliman, and B. Sturmfels, “Constructions and complexity of
secondary polytopes,” Adv. Math. 83 no. 2, (1990) 155–179.

[49] I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky,
Discriminants, resultants, and multidimensional determinants. Mathematics: Theory
& Applications. Birkhäuser Boston Inc., Boston, MA, 1994.

[50] F. Hirzebruch, Topological methods in algebraic geometry. Classics in Mathematics.
Springer-Verlag, Berlin, 1995.

[51] Wolfram Research, Inc., “Mathematica edition: Version 8.0,”.
http://www.wolfram.com/.

[52] J. Knapp, M. Kreuzer, C. Mayrhofer, and N.-O. Walliser, “Toric Construction of
Global F-Theory GUTs,” JHEP 1103 (2011) 138, arXiv:1101.4908 [hep-th].

71

http://dx.doi.org/10.1007/s002220050093
http://arxiv.org/abs/alg-geom/9509009
http://dx.doi.org/10.1088/1126-6708/2007/10/023
http://arxiv.org/abs/0704.0449
http://dx.doi.org/10.2748/tmj/1178227461
http://dx.doi.org/10.1016/0550-3213(95)00434-2
http://arxiv.org/abs/hep-th/9506091
http://dx.doi.org/10.1016/0001-8708(90)90077-Z
http://dx.doi.org/10.1007/978-0-8176-4771-1
http://www.wolfram.com/
http://dx.doi.org/10.1007/JHEP03(2011)138
http://arxiv.org/abs/1101.4908

	1 Introduction
	1.1 A brief history of PALP
	1.2 How to use this manual

	2 General aspects of using PALP
	2.1 Polytope input
	2.2 Error handling
	2.3 Some peculiarities of PALP

	3 poly.x
	3.1 General description of poly.x
	3.2 Options of poly.x

	4 cws.x
	4.1 General description of cws.x
	4.2 Options of cws.x

	5 class.x
	5.1 General description of class.x
	5.2 Options of class.x

	6 nef.x
	6.1 General Description of nef.x
	6.2 Nef partitions and reflexive Gorenstein cones
	6.3 Standard output
	6.4 Options of nef.x

	7 mori.x
	7.1 General aspects of mori.x
	7.2 Options of mori.x

