
An Extensible SAT-solver[extended version 1.2℄Niklas E�en, Niklas S�orenssonChalmers University of Te
hnology, Swedenfeen,nikg�
s.
halmers.seAbstra
t. In this arti
le, we present a small,
omplete, and eÆ
ientSAT-solver in the style of
on
i
t-driven learning, as exempli�ed by
CHAFF. We aim to give suÆ
ient details about implementation to enablethe reader to
onstru
t his or her own solver in a very short time. Thiswill allow users of SAT-solvers to make domain spe
i�
 extensions oradaptions of
urrent state-of-the-art SAT-te
hniques, to meet the needsof a parti
ular appli
ation area. The presented solver is designed withthis in mind, and in
ludes among other things a me
hanism for addingarbitrary boolean
onstraints. It also supports solving a series of relatedSAT-problems eÆ
iently by an in
remental SAT-interfa
e.1 Introdu
tionThe use of SAT-solvers in various appli
ations is on the mar
h. As insight on howto eÆ
iently en
ode problems into SAT is in
reasing, a growing number of prob-lem domains are su

essfully being ta
kled by SAT-solvers. This is parti
ularlytrue for the ele
troni
 design automation (EDA) industry [BCCFZ99,Lar92℄.The su

ess is further magni�ed by
urrent state-of-the-art solvers being ex-tended and adapted to meet the spe
i�

hara
teristi
s of these problem domains[ARMS02,ES03℄.However, modifying an existing solver, even with a thorough understandingof both the problem domain and of modern SAT-te
hniques,
an be
ome a time
onsuming and bewildering journey into the mysterious inner workings of a ten-thousand-line software pa
kage. Likewise, writing a solver from s
rat
h
an alsobe a daunting task, as there are numerous pitfalls hidden in the intri
ate detailsof a
orre
t and eÆ
ient solver. The problem is that although the te
hniquesused in a modern SAT-solver are well do
umented, the details ne
essary for animplementation have not been adequately presented before.In the fall of 2002, the authors implemented the solvers SATZOO and SAT-

NIK. In order to suÆ
iently understand the implementation tri
ks needed for amodern SAT-solver, it was ne
essary to
onsult the sour
e-
ode of previous im-plementations.1 We �nd that the material
ontained therein
an be made morea

essible, whi
h is desirable for the SAT-
ommunity. Thus, the prin
ipal goal ofthis arti
le is to bridge the gap between existing des
riptions of SAT-te
hniquesand their a
tual implementation.We will do this by presenting the
ode of a minimal SAT-solver MINISAT,based on the ideas for
on
i
t-driven ba
ktra
king [MS96℄, together with wat
hedliterals and dynami
 variable ordering [MZ01℄. The original C++ sour
e
ode1
LIMMAT at http://www.inf.ethz.
h/personal/biere/proje
ts/limmat/
ZCHAFF at http://www.ee.prin
eton.edu/~
haff/z
haff

(downloadable from http://www.
s.
halmers.se/~een) for MINISAT is under600 lines (not
ounting
omments), and is the result of rethinking and simplifyingthe designs of SATZOO and SATNIK without sa
ri�
ing eÆ
ien
y. We will presentall the relevant parts of the
ode in a manner that should be a

essible to anyonea
quainted with either C++ or Java.The presented
ode in
ludes an in
remental SAT-interfa
e, whi
h allows fora series of related problems to be solved with potentially huge eÆ
ien
y gains[ES03℄. We also generalize the expressiveness of the SAT-problem formulationby providing a me
hanism for arbitrary
onstraints over boolean variables to bede�ned. Paragraphs dis
ussing implementation alternatives are marked \[Dis-
ussion℄" and
an be skipped on a �rst reading.From the do
umentation in this paper we hope it is possible for you toimplement a fresh SAT-solver in your favorite language, or to grab the C++version of MINISAT from the net and start modifying it to in
lude new andinteresting ideas.2 Appli
ation Programming Interfa
eWe start by presenting MINISAT's external interfa
e, with whi
h a user appli-
ation
an spe
ify and solve SAT-problems. A basi
 knowledge about SAT isassumed (see for instan
e [MS96℄). The types var , lit , and Ve
 for variables,literals, and ve
tors respe
tively are explained in detail in se
tion 4.
lass Solver { Publi
 interfa
evar newVar ()bool addClause (Ve
hliti literals)bool add: : : (: : :)bool simplifyDB ()bool solve (Ve
hliti assumptions)Ve
hbooli model { If found, this ve
tor has the model.The \add : : :" method should be understood as a pla
e-holder for additional
onstraints implemented in an extension of MINISAT.For a standard SAT-problem, the interfa
e is used in the following way: Vari-ables are introdu
ed by
alling newVar(). From these variables,
lauses are builtand added by addClause(). Trivial
on
i
ts, su
h as two unit
lauses fxg and fxgbeing added,
an be dete
ted by addClause(), in whi
h
ase it returns False.From this point on, the solver state is unde�ned and must not be used further.If no su
h trivial
on
i
t is dete
ted during the
lause insertion phase, solve()is
alled with an empty list of assumptions. It returns False if the problem isunsatis�able, and True if it is satis�able, in whi
h
ase the model
an be readfrom the publi
 ve
tor \model".The simplifyDB() method
an be used before
alling solve() to simplify theset of problem
onstraints (often
alled the
onstraint database). In our imple-mentation, simplifyDB() will �rst propagate all unit information, then removeall satis�ed
onstraints. As for addClause(), the simpli�er
an sometimes dete
t a2

on
i
t, in whi
h
ase False is returned and the solver state is, again, unde�nedand must not be used further.If the solver returns satis�able, new
onstraints
an be added repeatedly tothe existing database and solve() run again. However, more interesting sequen
esof SAT-problems
an be solved by the use of unit assumptions. When passinga non-empty list of assumptions to solve(), the solver temporarily assumes theliterals to be true. After �nding a model or a
ontradi
tion, these assumptionsare undone, and the solver is returned to a usable state, even when solve() returnFalse, whi
h now should be interpreted as unsatis�able under assumptions.For this to work,
alling simplifyDB() before solve() is no longer optional.It is the me
hanism for dete
ting
on
i
ts independent of the assumptions {referred to as a top-level
on
i
t from now on { whi
h puts the solver in anunde�ned state. We wish to remark that the ability to pass unit assumptions tosolve() is more powerful than it might appear at �rst. For an example of its use,see [ES03℄.An alternative interfa
e would be for solve() to return one of three values: [Dis
ussion℄satis�able, unsatis�able, or unsatis�able under assumptions. This is indeed a lesserror-prone interfa
e as there is no longer a pre-
ondition on the use of solve().The
urrent interfa
e, however, represents the smallest modi�
ation of a non-in
remental SAT-solver. The early non-in
remental version of SATZOO was made
ompliant to the above interfa
e by adding just 5 lines of
ode.3 Overview of the SAT-solverThis arti
le will treat the popular style of SAT-solvers based on the DPLL algo-rithm [DLL62℄, ba
ktra
king by
on
i
t analysis and
lause re
ording (also re-ferred to as learning) [MS96℄, and boolean
onstraint propagation (BCP) usingwat
hed literals [MZ01℄.2 We will refer to this style of solver as a
on
i
t-drivenSAT-solver.The
omponents of su
h a solver, and indeed a more general
onstraint solver,
an be
on
eptually divided into three
ategories:� Representation. Somehow the SAT-instan
e must be represented by inter-nal data stru
tures, as must any derived information.� Inferen
e. Brute for
e sear
h is seldom good enough on its own. A solveralso needs some me
hanism for
omputing and propagating the dire
t im-pli
ations of the
urrent state of information.� Sear
h. Inferen
e is almost always
ombined with sear
h to make the solver
omplete. The sear
h
an be viewed as another way of deriving information.A standard
on
i
t-driven SAT-solver
an represent
lauses (with two literals ormore) and assignments. Although the assignments
an be viewed as unit-
lauses,they are treated spe
ially in many ways, and are best viewed as a separate typeof information.The only inferen
e me
hanism used by a standard solver is unit propagation.As soon as a
lause be
omes unit under the
urrent assignment (all literals ex
ept2 This in
ludes SAT-solvers su
h as: ZCHAFF, LIMMAT, BERKMIN.3

one are false), the remaining unbound literal is set to true, possibly makingmore
lauses unit. The pro
ess is
ontinued until no more information
an bepropagated.The sear
h pro
edure of a modern solver is the most
omplex part. Heuris-ti
ally, variables are pi
ked and assigned values (assumptions are made), untilthe propagation dete
ts a
on
i
t (all literals of a
lause have be
ome false).At that point, a so
alled
on
i
t
lause is
onstru
ted and added to the SATproblem. Assumptions are then
an
eled by ba
ktra
king until the
on
i
t
lausebe
omes unit, from whi
h point this unit
lause is propagated and the sear
hpro
ess
ontinues.
MINISAT is extensible with arbitrary boolean
onstraints. This will a�e
t therepresentation, whi
h must be able to store these
onstraints; the inferen
e,whi
h must be able to derive unit information from these
onstraints; and thesear
h, whi
h must be able to analyze and generate
on
i
t
lauses from the
onstraints. The me
hanism we suggest for managing general
onstraints is verylightweight, and by making the dependen
ies between the SAT-algorithm andthe
onstraints implementation expli
it, we feel it rather adds to the
larity ofthe solver than obs
ures it.Propagation. The propagation pro
edure of MINISAT is largely inspired bythat of CHAFF [MZ01℄. For ea
h literal, a list of
onstraints is kept. These arethe
onstraints that may propagate unit information (variable assignments) ifthe literal be
omes True. For
lauses, no unit information
an be propagateduntil all literals ex
ept one have be
ome False. Two unbound literals p and q ofthe
lause are therefore sele
ted, and referen
es to the
lause are added to thelists of p and q respe
tively. The literals are said to be wat
hed and the lists of
onstraints are referred to as wat
her lists. As soon as a wat
hed literal be
omesTrue, the
onstraint is invoked to see if information may be propagated, or tosele
t new unbound literals to be wat
hed.A feature of the wat
her system for
lauses is that on ba
ktra
king, no adjust-ment to the wat
her lists need to be done. Ba
ktra
king is therefore very
heap.However, for other
onstraint types, this is not ne
essarily a good approa
h.
MINISAT therefore supports the optional use of undo lists for those
onstraints;storing what
onstraints need to be updated when a variable be
omes unboundby ba
ktra
king.Learning. The learning pro
edure of MINISAT follows the ideas of Marques-Silva and Sakallah in [MS96℄. The pro
ess starts when a
onstraint be
omes
on
i
ting (impossible to satisfy) under the
urrent assignment. The
on
i
ting
onstraint is then asked for a set of variable assignments that make it
ontradi
-tory. For a
lause, this would be all the literals of the
lause (whi
h are Falseunder a
on
i
t). Ea
h of the variable assignments returned must be either anassumption of the sear
h pro
edure, or the result of some propagation of a
on-straint. The propagating
onstraints are in turn asked for the set of variableassignments that for
ed the propagation to o

ur,
ontinuing the analysis ba
k-wards. The pro
edure is repeated until some termination
ondition is ful�lled,resulting in a set of variable assignments that implies the
on
i
t. A
lause pro-hibiting that parti
ular assignment is added to the
lause database. This learnt4

lause must always, by
onstru
tion, be implied by the original problem
on-straints.Learnt
lauses serve two purposes: they drive the ba
ktra
king (as we shallsee) and they speed up future
on
i
ts by \
a
hing" the reason for the
on
i
t.Ea
h
lause will prevent only a
onstant number of inferen
es, but as the re
orded
lauses start to build on ea
h other and parti
ipate in the unit propagation, thea

umulated e�e
t of learning
an be massive. However, as the set of learnt
lauses in
rease, propagation is slowed down. Therefore, the number of learnt
lauses is periodi
ally redu
ed, keeping only the
lauses that seem useful by someheuristi
.Sear
h. The sear
h pro
edure of a
on
i
t-driven SAT-solver is somewhat im-pli
it. Although a re
ursive de�nition of the pro
edure might be more elegant,it is typi
ally des
ribed (and implemented) iteratively. The pro
edure will startby sele
ting an unassigned variable x (
alled the de
ision variable) and assumea value for it, say True. The
onsequen
es of x=True will then be propa-gated, possibly resulting in more variable assignments. All variables assigned asa
onsequen
e of x is said to be from the same de
ision level,
ounting from 1for the �rst assumption made and so forth. Assignments made before the �rstassumption (de
ision level 0) are
alled top-level.All assignments will be stored on a sta
k in the order they were made; fromnow on referred to as the trail. The trail is divided into de
ision levels and isused to undo information during ba
ktra
king.The de
ision phase will
ontinue until either all variables have been assigned,in whi
h
ase we have a model, or a
on
i
t has o

urred. On
on
i
ts, thelearning pro
edure will be invoked and a
on
i
t
lause produ
ed. The trail willbe used to undo de
isions, one level at a time, until pre
isely one of the literals ofthe learnt
lause be
omes unbound (they are all False at the point of
on
i
t).By
onstru
tion, the
on
i
t
lause
annot go dire
tly from
on
i
ting to a
lausewith two or more unbound literals. If the
lause remains unit for several de
isionlevels, it is advantageous to
hose the lowest level (referred to as ba
kjumping ornon-
hronologi
al ba
ktra
king [MS96℄).looppropagate() { propagate unit
lausesif not
on
i
t thenif all variables assigned thenreturn Satisfiableelsede
ide() { pi
k a new variable and assign itelseanalyze() { analyze
on
i
t and add a
on
i
t
lauseif top-level
on
i
t found thenreturn Unsatisfiableelseba
ktra
k() { undo assignments until
on
i
t
lause is unit5

An important part of the pro
edure is the heuristi
 for de
ide(). Like CHAFF,
MINISAT uses a dynami
 variable order that gives priority to variables involvedin re
ent
on
i
ts.Although this is a good default order, domain spe
i�
 heuristi
s have su

ess-[Dis
ussion℄ fully been used in various areas to improve the performan
e [Stri00℄. Variableordering is a traditional target for improving SAT-solvers.A
tivity heuristi
s. One important te
hnique introdu
ed by CHAFF [MZ01℄ isa dynami
 variable ordering based on a
tivity (referred to as the VSIDS heuris-ti
). The original heuristi
 imposes an order on literals, but borrowing from
SATZOO, we make no distin
tion between p and p in MINISAT.Ea
h variable has an a
tivity atta
hed to it. Every time a variable o

urs in are
orded
on
i
t
lause, its a
tivity is in
reased. We will refer to this as bumping.After re
ording the
on
i
t, the a
tivity of all the variables in the system aremultiplied by a
onstant less than 1, thus de
aying the a
tivity of variables overtime. Re
ent in
rements
ount more than old. The
urrent sum determines thea
tivity of a variable.In MINISAT we use a similar idea for
lauses. When a learnt
lause is usedin the analysis pro
ess of a
on
i
t, its a
tivity is bumped. Ina
tive
lauses areperiodi
ally removed.Constraint removal. The
onstraint database is divided into two parts: theproblem
onstraints and the learnt
lauses. As we have noted, the set of learnt
lauses
an be periodi
ally redu
ed to in
rease the performan
e of propagation.Learnt
lauses are used to
rop future bran
hes in the sear
h tree, so we riskgetting a bigger sear
h spa
e instead. The balan
e between the two for
es isdeli
ate, and there are SAT-instan
es for whi
h a big learnt
lause set is ad-vantageous, and others where a small set is better. MINISAT's default heuristi
starts with a small set and gradually in
reases the size.Problem
onstraints
an also be removed if they are satis�ed at the top-level.The API method simplifyDB() is responsible for this. The pro
edure is par-ti
ularly important for in
remental SAT-problems, where te
hniques for
lauseremoval build on this feature.Top-level solver. Although the pseudo-
ode for the sear
h pro
edure presentedabove suÆ
es for a simple
on
i
t-driven SAT-solver, a solver strategy
an im-prove the performan
e. A typi
al strategy applied by modern
on
i
t-drivenSAT-solvers is the use of restarts to es
ape from futile parts of the sear
h tree.In MINISAT we also vary the number of learnt
lauses kept at a given time.Furthermore, the solve() method of the API supports in
remental assumptions,not handled by the above pseudo-
ode.4 ImplementationThe following
onventions are used in the
ode. Atomi
 types start with a lower-
ase letter and are passed by value. Composite types start with a
apital letterand are passed by referen
e. Blo
ks are marked only by indentation level. The6

lass Ve
hT i { Publi
 interfa
e{ Constru
tors:Ve
()Ve
(int size)Ve
(int size, T pad){ Size operations:int size ()void shrink (int nof elems)void pop ()void growTo (int size)void growTo (int size, T pad)void
lear (){ Sta
k interfa
e:void push ()void push (T elem)T last (){ Ve
tor interfa
e:T op [℄ (int index){ Dupli
atation:void
opyTo (Ve
hT i
opy)void moveTo (Ve
hT i dest)

lass lit { Publi
 interfa
elit (var x){ Global fun
tions:lit op : (lit p)bool sign (lit p)int var (lit p)int index (lit p)
lass lbool { Publi
 interfa
elbool () lbool (bool x){ Global fun
tions:lbool op : (lbool x){ Global
onstants:lbool False?, True?, ?
lass QueuehT i { Publi
 interfa
eQueue ()void insert (T x)T dequeue ()void
lear ()int size ()Fig. 1. Basi
 abstra
t data types used throughout the
ode. The ve
tor data type
anpush a default
onstru
ted element by the push() method with no argument. ThemoveTo() method will move the
ontents of a ve
tor to another ve
tor in
onstanttime,
learing the sour
e ve
tor. The literal data type has an index() method whi
h
onverts the literal to a \small" integer suitable for array indexing. The var() methodreturns the underlying variable of the literal, and the sign() method if the literal issigned (False for x and True for x).bottom symbol ? will always mean unde�ned ; the symbol False will be usedto denote the boolean false.We will use, but not spe
ify an implementation of, the following abstra
t datatypes: Ve
hT i an extensible ve
tor of type T ; lit the type of literals
ontaininga spe
ial literal ?lit; lbool for the lifted boolean domain
ontaining elementsTrue?, False?, and ?; QueuehT i a queue of type T . We also use var asa type synonym for int (for impli
it do
umentation) with the spe
ial
onstant?var. The interfa
es of the abstra
t data types are presented in Figure 1.4.1 The solver stateA number of things need to be stored in the solver state. Figure 2 shows the
omplete set of member variables of the solver type of MINISAT. Together withthe state variables we de�ne some short helper methods in Figure 3, as well asthe interfa
e of VarOrder (Figure 4), explained in se
tion 4.6.The state does not
ontain a boolean \
on
i
t" to remember if a top-level [Dis
ussion℄
on
i
t has been rea
hed. Instead we impose as an invariant that the solver mustnever be in a
on
i
ting state. As a
onsequen
e, any method that puts the solver7

in a
on
i
ting state must
ommuni
ate this. Using the solver obje
t after thispoint is illegal. The invariant makes the interfa
e slightly more
umbersome touse, but simpli�es the implementation, whi
h is important when extending andexperimenting with new te
hniques.4.2 Constraints
MINISAT
an handle arbitrary
onstraints over boolean variables through theabstra
tion presented in Figure 5. Ea
h
onstraint type needs to implementmethods for
onstru
ting, removing, propagating and
al
ulating reasons. Inaddition, methods for simplifying the
onstraint and updating the
onstraint onba
ktra
k
an be spe
i�ed. We explain the meaning and responsibilities of thesemethods in detail:Constru
tor. The
onstru
tor may only be
alled at the top-level. It must
reate and add the
onstraint to appropriate wat
her lists after enqueu-ing any unit information derivable under the
urrent top-level assignment.Should a
on
i
t arise, this must be
ommuni
ated to the
aller.Remove. The remove method supplants the destru
tor by re
eiving thesolver state as a parameter. It should dispose the
onstraint and remove itfrom the wat
her lists.Propagate. The propagate method is
alled if the
onstraint is found ina wat
her list during propagation of unit information p. The
onstraint isremoved from the list and is required to insert itself into a new or the samewat
her list. Any unit information derivable as a
onsequen
e of p should beenqueued. If su

essful, True is returned; if a
on
i
t is dete
ted, False isreturned. The
onstraint may add itself to the undo list of var(p) if it needsto be updated when p be
omes unbound.Simplify. At the top-level, a
onstraint may be given the opportunity tosimplify its representation (returns False) or state that the
onstraint issatis�ed under the
urrent assignment and
an be removed (returns True).A
onstraint must not be simpli�able to produ
e unit information or to be
on
i
ting; in that
ase the propagation has not been
orre
tly de�ned.Undo. During ba
ktra
king, this method is
alled if the
onstraint addeditself to the undo list of var(p) in propagate(). The
urrent variable assign-ments are guaranteed to be identi
al to that of the moment before propa-gate() was
alled.Cal
ulate Reason. This method is given a literal p and an empty ve
tor.The
onstraint is the reason for p being true, that is, during propagation, the
urrent
onstraint enqueued p. The re
eived ve
tor is extended to in
lude aset of assignments (represented as literals) implying p. The
urrent variableassignments are guaranteed to be identi
al to that of the moment beforethe
onstraint propagated p. The literal p is also allowed to be the spe
ial
onstant ?lit in whi
h
ase the reason for the
lause being
on
i
ting shouldbe returned through the ve
tor. 8

lass Solver{ Constraint databaseVe
hConstri
onstrs { List of problem
onstraints.Ve
hClausei learnts { List of learnt
lauses.double
la in
 { Clause a
tivity in
rement { amount to bump with.double
la de
ay { De
ay fa
tor for
lause a
tivity.{ Variable orderVe
hdoublei a
tivity { Heuristi
 measurement of the a
tivity of a variable.double var in
 { Variable a
tivity in
rement { amount to bump with.double var de
ay { De
ay fa
tor for variable a
tivity.VarOrder order { Keeps tra
k of the dynami
 variable order.{ PropagationVe
hVe
hConstrii { For ea
h literal 'p', a list of
onstraints wat
hing 'p'.wat
hes A
onstraint will be inspe
ted when 'p' be
omes true.Ve
hVe
hConstrii { For ea
h variable 'x', a list of
onstraints that need toundos update when 'x' be
omes unbound by ba
ktra
king.Queuehliti propQ { Propagation queue.{ AssignmentsVe
hlbooli assigns { The
urrent assignments indexed on variables.Ve
hliti trail { List of assignments in
hronologi
al order.Ve
hinti trail lim { Separator indi
es for di�erent de
ision levels in 'trail'.Ve
hConstri reason { For ea
h variable, the
onstraint that implied its value.Ve
hinti level { For ea
h variable, the de
ision level it was assigned.int root level { Separates in
remental and sear
h assumptions.Fig. 2. Internal state of the solver.int Solver.nVars() return assigns.size()int Solver.nAssigns() return trail.size()int Solver.nConstraints() return
onstrs.size()int Solver.nLearnts() return learnts.size()lbool Solver.value(var x) return assigns[x℄lbool Solver.value(lit p) return sign(p) ? :assigns[var(p)℄ : assigns[var(p)℄int Solver.de
isionLevel() return trail lim.size()Fig. 3. Small helper methods. For instan
e, nLearnts() returns the number of learnt
lauses.
lass VarOrder { Publi
 interfa
eVarOrder (Ve
hlbooli ref to assigns, Ve
hdoublei ref to a
tivity)void newVar() { Called when a new variable is
reated.void update(var x) { Called when variable has in
reased in a
tivity.void updateAll() { Called when all variables have been assigned new a
tivities.void undo(var x) { Called when variable is unbound (may be sele
ted again).var sele
t() { Called to sele
t a new, unassigned variable.Fig. 4. Assisting ADT for the dynami
 variable ordering of the solver. The
onstru
tortakes referen
es to the assignment ve
tor and the a
tivity ve
tor of the solver. Themethod sele
t() will return the unassigned variable with the highest a
tivity.9

lass Constrvirtual void remove (Solver S) { must be de�nedvirtual bool propagate (Solver S, lit p) { must be de�nedvirtual bool simplify (Solver S) { defaults to return falsevirtual void undo (Solver S, lit p) { defaults to do nothingvirtual void
al
Reason (Solver S, lit p, Ve
hliti out reason) { must be de�nedFig. 5. Abstra
t base
lass for
onstraints.The
ode for the Clause
onstraint is presented in Figure 7. It is also used forlearnt
lauses, whi
h are unique in that they
an be added to the
lause databasewhile the solver is not at top-level. This makes the
onstru
tor
ode a bit more
ompli
ated than it would be for a normal
onstraint.Implementing the addClause() method of the var Solver.newVar()int indexindex = nVars()wat
hes .push()wat
hes .push()undos .push()reason .push(Null)assigns .push(?)level .push(-1)a
tivity .push(0)order .newVar()return indexFig. 6. Creates a new SATvariable in the solver.

solver API is just a matter of
alling Clause -new() and pushing the new
onstraint on the\
onstrs" ve
tor, storing the list of problem
on-straints. For
ompleteness, we also display the
ode for
reating variables in the solver (Fig-ure 6).There are a number of tri
ks for smart-
oding[Dis
ussion℄ that
an be used in a C++ implementation ofClause. In parti
ularly the \lits" ve
tor
an beimplemented as an zero-sized array pla
ed lastin the
lass, and then extra memory allo
atedfor the
lause to
ontain the data. We observeda 20% speedup for this tri
k. Furthermore, mem-ory
an be saved by not storing a
tivity for prob-lem
lauses.Of the methods de�ning a
onstraint, propagate() should be the primary tar-[Dis
ussion℄ get for eÆ
ient implementation. The SAT-solver spends about 80% of the timepropagating, so the method will be
alled frequently. In SATZOO a performan
egain was a
hieved by remembering the position of the last wat
hed literal andstart looking for a new literal to wat
h from that position. Further speedupsmay be a
hieved by spe
ializing the
ode for small
lause sizes.4.3 PropagationGiven the me
hanism for adding
onstraints, we now move on to des
ribe thepropagation of unit information on these
onstraints.The propagation routine keeps a set of literals (unit information) that is tobe propagated. We
all this the propagation queue. When a literal is inserted intothe queue, the
orresponding variable is immediately assigned. For ea
h literalin the queue, the wat
her list of that literal determines the
onstraints that maybe a�e
ted by the assignment. Through the interfa
e des
ribed in the previousse
tion, ea
h
onstraint is asked by a
all to its propagate() method if more unitinformation
an be inferred, whi
h will then be enqueued. The pro
ess
ontinuesuntil either the queue is empty or a
on
i
t is found.10

lass Clause : publi
 Constrbool learnt
oat a
tivityVe
hliti lits{ Constru
tor {
reates a new
lause and adds it to wat
her lists:stati
 bool Clause new(Solver S, Ve
hliti ps, bool learnt, Clause out
lause)\Implementation in Figure 8 "{ Learnt
lauses only:bool lo
ked(Solver S)return S.reason[var(lits[0℄)℄ == this{ Constraint interfa
e:void remove(Solver S)removeElem(this, S.wat
hes[index(:lits[0℄)℄)removeElem(this, S.wat
hes[index(:lits[1℄)℄)delete thisbool simplify(Solver S) { only
alled at top-level with empty prop. queueint j = 0for (int i = 0; i < lits.size(); i++)if (S.value(lits[i℄) == True?)return Trueelse if (S.value(lits[i℄) == ?)lits[j++℄ = lits[i℄ { false literals are not
opied (only o

ur for i � 2)lits.shrink(lits.size() � j)return Falsebool propagate(Solver S, lit p){ Make sure the false literal is lits[1℄:if (lits[0℄ == :p)lits[0℄ = lits[1℄, lits[1℄ = :p{ If 0th wat
h is true, then
lause is already satis�ed.if (S.value(lits[0℄) == True?)S.wat
hes[index(p)℄.push(this) { re-insert
lause into wat
her listreturn True{ Look for a new literal to wat
h:for (int i = 2; i < size(); i++)if (S.value(lits[i℄) != False?)lits[1℄ = lits[i℄, lits[i℄ = :pS.wat
hes[index(:lits[1℄)℄.push(this) { insert
lause into wat
her listreturn True{ Clause is unit under assignment:S.wat
hes[index(p)℄.push(this)return S.enqueue(lits[0℄, this) { enqueue for propagationvoid
al
Reason(Solver S, lit p, ve
hliti out reason){ invariant: (p == ?) or (p == lits[0℄)for (int i = ((p == ?) ? 0 : 1); i < size(); i++)out reason.push(:lits[i℄) { invariant: S.value(lits[i℄) == False?if (learnt) S.
laBumpA
tivity(this)Fig. 7. Implementation of the Clause
onstraint.11

bool Clause new(Solver S, Ve
hliti ps, bool learnt, Clause out
lause)out
lause = Null{ Normalize
lause:if (!learnt)if ("any literal in ps is true") return Trueif ("both p and :p o

urs in ps") return True"remove all false literals from ps""remove all dupli
ates from ps"if (ps.size() == 0)return Falseelse if (ps.size() == 1)return S.enqueue(ps[0℄) { unit fa
ts are enqueuedelse{ Allo
ate
lause:Clause
 = new Clauseps.moveTo(
.lits)
.learnt = learnt
.a
tivity = 0 { only relevant for learnt
lausesif (learnt){ Pi
k a se
ond literal to wat
h:"Let max i be the index of the literal with highest de
ision level"
.lits[1℄ = ps[max i℄,
.lits[max i℄ = ps[1℄{ Bumping:S.
laBumpA
tivity(
) { newly learnt
lauses should be
onsidered a
tivefor (int i = 0; i < ps.size(); i++)S.varBumpA
tivity(ps[i℄) { variables in
on
i
t
lauses are bumped{ Add
lause to wat
her lists:S.wat
hes[index(:
.lits[0℄)℄.push(
)S.wat
hes[index(:
.lits[1℄)℄.push(
)out
lause =
return TrueFig. 8. Constru
tor fun
tion for
lauses. Returns False if top-level
on
i
t is dete
ted.'out
lause' may be set to Null if the new
lause is already satis�ed under the
urrenttop-level assignment. Post-
ondition: 'ps' is
leared. For learnt
lauses, all literals willbe false ex
ept `lits[0℄' (this by design of the analyze() method). For the propagationto work, the se
ond wat
h must be put on the literal whi
h will �rst be unbound byba
ktra
king. (Note that none of the learnt-
lause spe
i�
 things needs to be done fora user de�ned
onstraint type.)
12

An implementation of this pro
edure is displayed in Figure 9. It starts bydequeuing a literal and
learing the wat
her list for that literal by moving it to\tmp". The propagate method is then
alled for ea
h
onstraint of \tmp". Thiswill re-insert wat
hes into new lists. Should a
on
i
t be dete
ted during thetraversal of \tmp", the remaining wat
hes will be
opied ba
k to the originalwat
her list, and the propagation queue
leared.The method for enqueuing unit information is relatively straightforward.Note that the same fa
t
an be enqueued several times, as it may be prop-agated from di�erent
onstraints, but it will only be put on the propagationqueue on
e.It may be that later enqueuings have a \better" reason (determined heuristi- [Dis
ussion℄
ally) and a small performan
e gain was a
hieved in SATZOO by
hanging reasonif the new reason was smaller than the previously stored. The
hanging a�e
tsthe
on
i
t
lause generation des
ribed in the next se
tion.4.4 LearningThis se
tion des
ribes the
on
i
t-driven
lause learning. It was �rst des
ribedin [MS96℄ and is one of the major advan
es of SAT-te
hnology in the last de
ade.We des
ribe the basi

on
i
t-analysis algorithm by an example. Assumethe database
ontains the
lause fx; y; zg whi
h just be
ame unsatis�ed duringpropagation. This is our
on
i
t. We
all x^y^z the reason set of the
on
i
t.Now x is false be
ause x was propagated from some
onstraint. We ask that
onstraint to give us the reason for propagating x (the
al
Reason() method).It will respond with another
onjun
tion of literals, say u ^ v . These were thevariable assignment that implied x. The
onstraint may in fa
t have been the
lause fu; v; xg. From this little analysis we know that u ^ v ^ y ^ z must alsolead to a
on
i
t. We may prohibit this
on
i
t by adding the
lause fu; v; y; zgto the
lause database. This would be an example of a learnt
on
i
t
lause.In the example, we pi
ked only one literal and analyzed it one step. Thepro
ess of expanding literals with their reason sets
an be
ontinued, in theextreme
ase until all the literals of the
on
i
t set are de
ision variables (whi
hwere not propagated by any
onstraints). Di�erent learning s
hemes based onthis pro
ess have been proposed. Experimentally the \First Unique Impli
ationPoint" (First UIP) heuristi
 has been shown e�e
tive [ZM01℄. We will not give thede�nition of UIPs here, but just state the algorithm: In a breadth-�rst manner,
ontinue to expand literals of the
urrent de
ision level, until there is just oneleft.In the
ode for analyze(), displayed in Figure 10, we make use of the fa
tthat a breadth-�rst traversal
an be a
hieved by inspe
ting the trail ba
kwards.Espe
ially, the variables of the reason set of p is always before p in the trail. Fur-thermore, in the algorithm we initialize p to ?lit, whi
h will make
al
Reason()return the reason for the
on
i
t.Assuming x to be the unit information that
auses the
on
i
t, an alternative [Dis
ussion℄implementation would be to
al
ulate the reason for x and just add x to that set.The
ode would be slightly more
umbersome but the
ontra
t for
al
Reason()would be simpler, as we no longer need the spe
ial
ase for ?lit.13

Constr Solver.propagate()while (propQ.size() > 0)lit p = propQ.dequeue() { 'p' is now the enqueued fa
t to propagateVe
hConstri tmp { 'tmp' will
ontain the wat
her list for 'p'wat
hes[index(p)℄.moveTo(tmp)for (int i = 0; i < tmp.size(); i++)if (!tmp[i℄.propagate(this, p)){ Constraint is
on
i
ting;
opy remaining wat
hes to 'wat
hes[p℄'{ and return
onstraint:for (int j = i+1; j < tmp.size(); j++)wat
hes[index(p)℄.push(tmp[j℄)propQ.
lear()return tmp[i℄return Nullbool Solver.enqueue(lit p, Constr from = Null)if (value(p) != ?)if (value(p) == False?){ Con
i
ting enqueued assignmentreturn Falseelse{ Existing
onsistent assignment { don't enqueuereturn Trueelse{ New fa
t, store itassigns [var(p)℄ = lbool(!sign(p))level [var(p)℄ = de
isionLevel()reason [var(p)℄ = fromtrail.push(p)propQ.insert(p)return TrueFig. 9. propagate(): Propagates all enqueued fa
ts. If a
on
i
t arises, the
on
i
ting
lause is returned, otherwise Null. enqueue(): Puts a new fa
t on the propagationqueue, as well as immediately updating the variable's value in the assignment ve
tor. Ifa
on
i
t arises, False is returned and the propagation queue is
leared. The parameter'from'
ontains a referen
e to the
onstraint from whi
h 'p' was propagated (defaultsto Null if omitted).Finally, the analysis not only returns a
on
i
t
lause, but also the ba
k-tra
king level. This is the lowest de
ision level for whi
h the
on
i
t
lause isunit. It is advantageous to ba
ktra
k as far as possible [MS96℄, and is referredto as ba
k-jumping or non-
hronologi
al ba
ktra
king in the literature.4.5 Sear
hThe sear
h method in Figure 13 works basi
ally as des
ribed in se
tion 3 butwith the following additions:Restarts. The �rst argument of the sear
h method is \nof
on
i
ts". Thesear
h for a model or a
ontradi
tion will only be
ondu
ted for this many14

void Solver.analyze(Constr
on
, Ve
hliti out learnt, Int out btlevel)Ve
hbooli seen(nVars(), False)int
ounter = 0lit p = ?litVe
hliti p reasonout learnt.push() { leave room for the asserting literalout btlevel = 0do p reason.
lear()
on
.
al
Reason(this, p, p reason) { invariant here:
on
 != NULL{ Tra
e reason for p:for (int j = 0; j < p reason.size(); j++)lit q = p reason[j℄if (!seen[var(q)℄)seen[var(q)℄ = Trueif (level[var(q)℄ == de
isionLevel())
ounter++else if (level[var(q)℄ > 0) { ex
lude variables from de
ision level 0out learnt.push(:q)out btlevel = max(out btlevel, level[var(q)℄){ Sele
t next literal to look at:do p = trail.last()
on
 = reason[var(p)℄undoOne()while (!seen[var(p)℄)
ounter��while (
ounter > 0)out learnt[0℄ = :pFig. 10. Analyze a
on
i
t and produ
e a reason
lause. Pre-
onditions: (1)'out learnt' is assumed to be
leared. (2) Current de
ision level must be greaterthan root level. Post-
onditions: (1) 'out learnt[0℄' is the asserting literal at level'out btlevel'. E�e
t: Will undo part of the trail, but not beyond last de
ision level.void Solver.re
ord(Ve
hliti
lause)Clause
 { will be set to
reated
lause, or NULL if '
lause[℄' is unitClause new(this,
lause, True,
) {
annot fail at this pointenqueue(
lause[0℄,
) {
annot fail at this pointif (
 != Null) learnts.push(
)Fig. 11. Re
ord a
lause and drive ba
ktra
king. Pre-
ondition: '
lause[0℄' must
ontainthe asserting literal. In parti
ular, '
lause[℄' must not be empty.15

on
i
ts. If failing to solve the SAT-problem within the bound, all assump-tions will be
an
eled and ? returned. The surrounding solver strategy willthen restart the sear
h, possibly with a new set of parameters.Redu
e. The se
ond argument, \nof learnts", sets an upper limit on thenumber of learnt
lauses that are kept. On
e this number is rea
hed, re-du
eDB() is
alled. Clauses that are
urrently the reason for a variable as-signment are said to be lo
ked and
annot be removed by redu
eDB(). Forthis reason, the limit is extended by the number of assigned variables, whi
happroximates the number of lo
ked
lauses.Parameters. The third argument to the sear
h method groups some tuning
onstants. In the
urrent version of MINISAT, it only
ontains the de
ayfa
tors for variables and
lauses.Root-level. To support in
remental SAT, the
on
ept of a root-level is in-trodu
ed. The root-level a
ts a bit as a new top-level. Above the root-levelare the in
remental assumptions passed to solve() (if any). The sear
h pro-
edure is not allowed to ba
ktra
k above the root-level, as this would
hangethe in
remental assumptions. If we rea
h a
on
i
t at root-level, the sear
hwill return False.A problem with the approa
h presented here is
on
i
t
lauses that areunit. For these, analyze() will always return a ba
ktra
k level of 0 (top-level). As unit
lauses are treated spe
ially, they are never added to the
lause database. Instead they are enqueued as fa
ts to be propagated (seethe
ode of Clause new()). There would be no problem if this was doneat top-level. However, the sear
h pro
edure will only undo until root-level,whi
h means that the unit fa
t will be enqueued there. On
e sear
h() hassolved the
urrent SAT-problem, the surrounding solver strategy will undoany in
remental assumption and put the solver ba
k at the top-level. By thisthe unit
lause will be forgotten, and the next in
remental SAT problem willhave to infer it again.A solution to this is to store the learnt unit
lauses in a ve
tor andre-insert them at top-level before the next
all to solve(). The reason foromitting this in MINISAT is that we have not seen any performan
e gain bythis extra handling in our appli
ations [ES03,CS03℄. Simpli
ity thus di
tatesthat we leave it out of the presentation.Simplify.Provided the root-level is 0 (no assumptions were passed to solve())the sear
h will return to the top-level every time a unit
lause is learnt. Atthat point it is legal to
all simplifyDB() to simplify the problem
onstraintsa

ording to the top-level assignment. If a stronger simpli�er than presentedhere is implemented, a
ontradi
tion may be found, in whi
h
ase the sear
hshould be aborted. As our simpli�er is not stronger than normal propaga-tion, it
an never rea
h a
ontradi
tion, so we ignore the return value ofsimplify(). 16

void Solver.undoOne()lit p = trail.last()var x = var(p)assigns [x℄ = ?reason [x℄ = Nulllevel [x℄ = -1order.undo(x)trail.pop()while (undos[x℄.size() > 0)undos[x℄.last().undo(this, p)undos[x℄.pop()
bool Solver.assume(lit p)trail lim.push(trail.size())return enqueue(p)void Solver.
an
el()int
 = trail.size()� trail lim.last()for (;
 != 0;
��)undoOne()trail lim.pop()void Solver.
an
elUntil(int level)while (de
isionLevel() > level)
an
el()Fig. 12. assume(): returns False if immediate
on
i
t. Pre-
ondition: propaga-tion queue is empty. undoOne(): unbinds the last variable on the trail.
an
el():reverts to the state before last push(). Pre-
ondition: propagation queue is empty.
an
elUntil():
an
els several levels of assumptions.4.6 A
tivity heuristi
sThe implementation of a
tivity is shown in Figure 14. Instead of a
tually multi-plying all variables by a de
ay fa
tor after ea
h
on
i
t, we bump variables withlarger and larger numbers. Only relative values matter. Eventually we will rea
hthe limit of what is representable by a
oating point number. At that point, alla
tivities are s
aled down.In the VarOrder data type of MINISAT, the list of variables is kept sortedon a
tivity at all time. The ba
ktra
king will always a

urately
hoose the mosta
tive variable. The original suggestion for the VSIDS dynami
 variable orderingwas to sort periodi
ally.The polarity of a literal is ignored in MINISAT. However, storing the latest [Dis
ussion℄polarity of a variable might improve the sear
h when restarts are used, but itremains to be empiri
ally supported. Furthermore, the interfa
e of VarOrder
an be used for other variable heuristi
s. In SATZOO, an initial stati
 variableorder
omputed from the
lause stru
ture was parti
ularly su

essful on manyproblems.4.7 Constraint removalThe methods for redu
ing the set of learnt
lauses as well as the top-level sim-pli�
ation pro
edure
an be found in Figure 15.When removing learnt
lauses, it is important not to remove so
alled lo
ked
lauses. Lo
ked
lauses are those parti
ipating in the
urrent ba
ktra
king bran
hby being the reason (through propagation) for a variable assignment. The redu
epro
edure keeps half of the learnt
lauses, ex
ept for those whi
h have de
ayedbelow a threshold limit. Su
h
lauses
an o

ur if the set of a
tive
onstraints isvery small.Top-level simpli�
ation
an be seen as a spe
ial
ase of propagation. Sin
e [Dis
ussion℄17

lbool Solver.sear
h(int nof
on
i
ts, int nof learnts, Sear
hParams params)int
on
i
tC = 0var de
ay = 1 / params.var de
ay
la de
ay = 1 / params.
la de
aymodel.
lear()loopConstr
on
 = propagate()if (
on
 != Null){ Confli
t
on
i
tC++Ve
hliti learnt
lauseint ba
ktra
k levelif (de
isionLevel() == root level)return False?analyze(
on
, learnt
lause, ba
ktra
k level)
an
elUntil(max(ba
ktra
k level, root level))re
ord(learnt
lause)de
ayA
tivities()else{ No
onfli
tif (de
isionLevel() == 0){ Simplify the set of problem
lauses:simplifyDB() { our simpli�er
annot return false hereif (learnts.size()�nAssigns() � nof learnts){ Redu
e the set of learnt
lauses:redu
eDB()if (nAssigns() == nVars()){ Model found:model.growTo(nVars())for (int i = 0; i < nVars(); i++)model[i℄ = (value(i) == True?)
an
elUntil(root level)return True?else if (
on
i
tC � nof
on
i
ts){ Rea
hed bound on number of
on
i
ts:
an
elUntil(root level) { for
e a restartreturn ?else{ New variable de
ision:lit p = lit(order.sele
t()) { may have heuristi
 for polarity hereassume(p) {
annot return falseFig. 13. Sear
h method. Assumes and propagates until a
on
i
t is found, from whi
ha
on
i
t
lause is learnt and ba
ktra
king performed until sear
h
an
ontinue. Pre-
ondition: root level == de
isionLevel().18

void Solver.varBumpA
tivity(var x)if ((a
tivity[x℄ += var in
) > 1e100)varRes
aleA
tivity()order.update(x)void Solver.varDe
ayA
tivity()var in
 *= var de
ayvoid Solver.varRes
aleA
tivity()for (int i = 0; i < nVars(); i++)a
tivity[i℄ *= 1e-100var in
 *= 1e-100
void Solver.
laBumpA
tivity(Clause
)void Solver.
laDe
ayA
tivity()void Solver.
laRes
aleA
tivity(){ Similarly implemented.void Solver.de
ayA
tivities()varDe
ayA
tivity()
laDe
ayA
tivity()Fig. 14. Bumping of variable and
lause a
tivities.it is performed under no assumption, anything learnt
an be kept forever. Thefreedom of not having to store derived information separately, with the abilityto undo it later, makes it easier to implement stronger propagation.4.8 Top-level solverThe method implementing MINISAT's top-level strategy
an be found in Figure16. It is responsible for making the in
remental assumptions and setting the rootlevel. Furthermore, it
ompletes the simple ba
ktra
king sear
h with restarts,whi
h are performed less and less frequently. After ea
h restart, the number ofallowed learnt
lauses is in
reased.The
ode
ontains a number of hand-tuned
onstants that have shown to per-form reasonable on our appli
ations [ES03,CS03℄. The top-level strategy, how-ever, is a produ
tive target for improvements (possibly appli
ation dependent).In SATZOO, the top-level strategy
ontains an initial phase where a stati
 vari-able ordering is used.5 Con
lusions and Related WorkBy this paper, we have provided a minimal referen
e implementation of a modern
on
i
t-driven SAT-solver. Despite the abstra
tion layer for boolean
onstraints,and the la
k of more sophisti
ated heuristi
s, the performan
e of MINISAT is
omparable to state-of-the-art SAT-solvers. We have tested MINISAT against

ZCHAFF and BERKMIN 5.61 on 177 SAT-instan
es. These instan
es were used totune SATZOO for the SAT 2003 Competition. As SATZOO solved more instan
esand series of problems, ranging over all three
ategories (industrial, handmade,and random), than any other solver in the
ompetition, we feel that this is agood test-set for the overall performan
e. No extra tuning was done in MINISAT;it was just run on
e with the
onstants presented in the
ode. At a time-out of10 minutes, MINISAT solved 158 instan
es, while ZCHAFF solved 147 instan
esand BERKMIN 157 instan
es.Another approa
h to in
remental SAT and non-
lausal
onstraints was pre-sented by Aloul, Ramani, Markov, and Sakallah in their work on SATIRE and
PBS [WKS01,ARMS02℄. Our implementation di�ers in that it has a simpler19

void Solver.redu
eDB()int i, jdouble lim =
la in
 / learnts.size()sortOnA
tivity(learnts)for (i=j=0; i < learnts.size()/2; i++)if (!learnts[i℄.lo
ked(this))learnts[i℄.remove(this)elselearnts[j++℄ = learnts[i℄for (; i < learnts.size(); i++)if (!learnts[i℄.lo
ked(this)&& learnts[i℄.a
tivity() < lim)learnts[i℄.remove(this)elselearnts[j++℄ = learnts[i℄learnts.shrink(i � j)

bool Solver.simplifyDB()if (propagate() != Null)return Falsefor (int type = 0; type < 2; type++)Ve
hConstri
s = type ?(Ve
hConstri)learnts :
onstrsint j = 0for (int i = 0; i <
s.size(); i++)if (
s[i℄.simplify(this))
s[i℄.remove(this)else
s[j++℄ =
s[i℄
s.shrink(
s.size()�j)return TrueFig. 15. redu
eDB(): Remove half of the learnt
lauses minus some lo
ked
lauses.A lo
ked
lause is a
lauses that is reason to a
urrent assignment. Clauses below a
ertain lower bound a
tivity are also be removed. simplifyDB(): Top-level simplifyof
onstraint database. Will remove any satis�ed
onstraint and simplify remaining
onstraints under
urrent (partial) assignment. If a top-level
on
i
t is found, False isreturned. Pre-
ondition: De
ision level must be zero. Post-
ondition: Propagationqueue is empty.bool Solver.solve(Ve
hliti assumps)Sear
hParams params(0.95, 0.999)double nof
on
i
ts = 100double nof learnts = nConstraints()/3lbool status = ?{ Push in
remental assumptions:for (int i = 0; i < assumps.size(); i++)if (!assume(assumps[i℄) j j propagate() != Null)
an
elUntil(0)return Falseroot level = de
isionLevel(){ Solve:while (status == ?)status = sear
h((int)nof
on
i
ts, (int)nof learnts, params)nof
on
i
ts *= 1.5nof learnts *= 1.1
an
elUntil(0)return status == True?Fig. 16. Main solve method. Pre-
ondition: If assumptions are used, simplifyDB()must be
alled right before using this method. If not, a top-level
on
i
t (resulting in anon-usable internal state)
annot be distinguished from a
on
i
t under assumptions.20

notion of in
rementality, and that it
ontains a well do
umented interfa
e fornon-
lausal
onstraints.Finally, a set of referen
e implementations of modern SAT-te
hniques ispresent in the OPENSAT proje
t.3 However, the proje
t aim for
ompletenessrather than minimal exposition, as we have
hosen in this paper.6 Exer
ises1. Write the
ode for an AtMost
onstraint. The
onstraint is satis�ed if atmost n out of m spe
i�ed literals are true.2. Implement a generator for (generalized) pigeon-hole formulas using the new
onstraints. The generator should take three arguments: number of pigeons,number of holes, and hole
apa
ity. Ea
h pigeon must reside in some pigeon-hole. No hole may
ontain more pigeons than its
apa
ity.3. Make an in
remental version that adds one pigeon to the problem at a timeuntil the problem be
omes unsatis�able.Referen
es[ARMS02℄ F. Aloul, A. Ramani, I. Markov, K. Sakallah. \Generi
 ILP vs. Spe-
ialized 0-1 ILP: an Update" in International Conferen
e on ComputerAided Design (ICCAD), 2002.[BCCFZ99℄ A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu. \Symboli
 ModelChe
king using SAT pro
edures instead of BDDs" in Pro
eedings ofDesign Automation Conferen
e (DAC'99), 1999.[CS03℄ K. Claessen, N. S�orensson. \New Te
hniques that ImproveMACE-styleFinite Model Finding" in CADE-19, Workshop W4. Model Computation{ Prin
iples, Algorithms, Appli
ations, 2003.[DLL62℄ M. Davis, G. Logemann, D. Loveland. \A ma
hine program for theoremproving" in Communi
ations of the ACM, vol 5, 1962.[ES03℄ N. E�en, N. S�orensson. \Temporal Indu
tion by In
remental SAT Solv-ing" in Pro
. of First International Workshop on Bounded Model Che
king,2003. ENTCS issue 4 volume 89.[Lar92℄ T. Larrabee. \Test Pattern Generation Using Boolean Satis�ability"in IEEE Transa
tions on Computer-Aided Design, vol. 11-1, 1992.[MS96℄ J.P. Marques-Silva, K.A. Sakallah. \GRASP { A New Sear
h Algorithmfor Satis�ability" in ICCAD. IEEE Computer So
iety Press, 1996[MZ01℄ M.W. Moskewi
z, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik. \Cha�: Engi-neering an EÆ
ient SAT Solver" in Pro
. of the 38th Design AutomationConferen
e, 2001.[Stri00℄ O. Stri
hman \Tuning SAT
he
kers for Bounded Model Che
king"in Pro
. of 12th Intl. Conf. on Computer Aided Veri�
ation, LNCS:1855,Springer-Verlag 2000[WKS01℄ J. Whittemore, J. Kim, K. Sakallah. \SATIRE: A New In
rementalSatis�ability Engine" in Pro
. 38th Conf. on Design Automation, ACMPress 2001.[ZM01℄ L. Zhang, C.F. Madigan, M.W. Moskewi
z, S. Malik. \EÆ
ient Con
i
tDriven Learning in Boolean Satis�ability Solver" in Pro
. of the In-ternational Conferen
e on Computer Aided Design (ICCAD), 2001.3 http://www.opensat.org 21

Appendix { What is missing from Satzoo?In order to redu
e the size of MINISAT to a minimum, all non-essential parts of
SATZOO/SATNIK were left out. Sin
e SATZOO won two
ategories of the SAT2003 Competition, we
hose to present the missing parts here for
ompleteness.Initial strategies:� Burst of random variable orders. Before anything else, SATZOO runs severalpasses of about 10-100
on
i
ts ea
h with the variable order initiated torandom. For satis�able problems, SATZOO
an sometimes stumble upon thesolution by this strategy. For hard (typi
ally unsatis�able) problems, impor-tant
lauses
an be learnt in this phase that is outside the "lo
al optimum"that the a
tivity driven variable heuristi
 will later get stu
k in.� Stati
 variable ordering. The se
ond phase of SATZOO is to
ompute a stati
variable ordering taking into a

ount how the variables of di�erent
lausesrelates to ea
h other (see Figure 17). Variables often o

urring together in
lauses will be put
lose in the variable order. SATZOO uses this stati
 or-dering for at least 5000
on
i
ts and does not stop until progress is haltedseverely. The stati
 ordering often
ounters the e�e
t of "shu�ing" the prob-lem (
hanging the order of
lauses). The authors believe this phase to be themost important feature left out of MINISAT, and an important part of thesu

ess of SATZOO in the
ompetition.4Extra variable de
ision heuristi
s:� Variable of re
ent importan
e. Inspired by the SAT-solver BERKMIN, o

a-sionally variables from re
ent (unsatis�ed) re
orded
lauses are pi
ked.� Random. About 1% of the time, a random variable is sele
ted for bran
hing.This simple strategy seems to
ra
k some extra problems without in
urringany substantial overhead for other problems. Give it a try!Other:� Equivalent variable substitution. The binary
lauses are
he
ked for
y
li
impli
ations. If a
y
le is found, a representative is sele
ted and all othervariables in the
y
le is repla
ed by this representative in the
lause database.This yields a smaller database and fewer variables. The simpli�
ation is doneperiodi
ally, but is most important in the initial phase (some problems
anbe very redundant).� Garbage
olle
tion. SATZOO implements its own memory management whi
hallows
lauses to be stored more
ompa
tly.� 0-1-programming. Pseudo-boolean
onstraints are supported by SATZOO.This
an of
ourse easily be added to MINISAT through the
onstraint in-terfa
e.4 The provided
ode
urrently has no further motivation beyond the authors' intuition.Indeed it was added as a qui
k ha
k two days before the
ompetition.22

void Solver.stati
VarOrder(){ Clear a
tivity:for (int i = 0; i < nVars(); i++) a
tivity[i℄ = 0{ Do simple variable a
tivity heuristi
:for (int i = 0; i <
lauses.size(); i++)Clause
 =
lauses[i℄double add = pow2 (�size(
))for (int j = 0; j < size(
); j++) a
tivity[var(
[j℄)℄ += add{ Cal
ulate the initial "heat" of all
lauses:Ve
hVe
hintii o

urs(2*nVars()) { Map literal to list of
lause indi
esVe
hPairhdouble,intii heat(
lauses.size()) { Pairs of heat and
lause indexfor (int i = 0; i <
lauses.size(); i++)Clause
 =
lauses[i℄double sum = 0for (int j = 0; j < size(
); j++)o

urs[index(
[j℄)℄.push(i)sum += a
tivity[var(
[j℄)℄heat[i℄ = Pair new(sum, i){ Bump heat for
lauses whose variables o

ur in other hot
lauses:double iter size = 0for (int i = 0; i <
lauses.size(); i++)Clause
 =
lauses[i℄for (int j = 0; j < size(
); j++) iter size += o

urs[index(
[j℄)℄.size()int iterations = min((int)(((double)literals / iter size) * 100), 10)double disapation = 1.0 / iterationsfor (int
 = 0;
 < iterations;
++)for (int i = 0; i <
lauses.size(); i++)Clause
 =
lauses[i℄for (int j = 0; j < size(
); j++)Ve
hinti os = o

urs[index(
[j℄)℄for (int k = 0; k < os.size(); k++)heat[i℄.fst += heat[os[k℄℄.fst * disapation{ Set a
tivity a

ording to hot
lauses:sort(heat)for (int i = 0; i < nVars(); i++) a
tivity[i℄ = 0double extra = 1e200for (int i = 0; i < heat.size(); i++)Clause&
 =
lauses[heat[i℄.snd℄for (int j = 0; j < size(
); j++)if (a
tivity[var(
[j℄)℄ == 0)a
tivity[var(
[j℄)℄ = extraextra *= 0.995order.updateAll()var in
 = 1Fig. 17. The stati
 variable ordering of SATZOO. The
ode is de�ned only for
lauses,not for arbitrary
onstraints. It must be adapted before it
an be used in MINISAT.23

