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Abstract. In this article, we present a small, complete, and efficient
SAT-solver in the style of conflict-driven learning, as exemplified by
CHAFF. We aim to give sufficient details about implementation to enable
the reader to construct his or her own solver in a very short time. This
will allow users of SAT-solvers to make domain specific extensions or
adaptions of current state-of-the-art SAT-techniques, to meet the needs
of a particular application area. The presented solver is designed with
this in mind, and includes among other things a mechanism for adding
arbitrary boolean constraints. It also supports solving a series of related
SAT-problems efficiently by an incremental SAT-interface.

1 Introduction

The use of SAT-solvers in various applications is on the march. As insight on how
to efficiently encode problems into SAT is increasing, a growing number of prob-
lem domains are successfully being tackled by SAT-solvers. This is particularly
true for the electronic design automation (EDA) industry [BCCFZ99,Lar92].
The success is further magnified by current state-of-the-art solvers being ex-
tended and adapted to meet the specific characteristics of these problem domains
[ARMS02,ES03].

However, modifying an existing solver, even with a thorough understanding
of both the problem domain and of modern SAT-techniques, can become a time
consuming and bewildering journey into the mysterious inner workings of a ten-
thousand-line software package. Likewise, writing a solver from scratch can also
be a daunting task, as there are numerous pitfalls hidden in the intricate details
of a correct and efficient solver. The problem is that although the techniques
used in a modern SAT-solver are well documented, the details necessary for an
implementation have not been adequately presented before.

In the fall of 2002, the authors implemented the solvers SATZOO and SAT-
NIK. In order to sufficiently understand the implementation tricks needed for a
modern SAT-solver, it was necessary to consult the source-code of previous im-
plementations.! We find that the material contained therein can be made more
accessible, which is desirable for the SAT-community. Thus, the principal goal of
this article is to bridge the gap between existing descriptions of SAT-techniques
and their actual implementation.

We will do this by presenting the code of a minimal SAT-solver MINISAT,
based on the ideas for conflict-driven backtracking [MS96], together with watched
literals and dynamic variable ordering [MZ01]. The original C++ source code

! LIMMAT at http://www.inf.ethz.ch/personal/biere/projects/limmat/
ZCHAFF at http://wuw.ee.princeton.edu/" chaff/zchaff



(downloadable from http://www.cs.chalmers.se/ een) for MINISAT is under
600 lines (not counting comments), and is the result of rethinking and simplifying
the designs of SATZOO and SATNIK without sacrificing efficiency. We will present
all the relevant parts of the code in a manner that should be accessible to anyone
acquainted with either C++ or Java.

The presented code includes an incremental SAT-interface, which allows for
a series of related problems to be solved with potentially huge efficiency gains
[ES03]. We also generalize the expressiveness of the SAT-problem formulation
by providing a mechanism for arbitrary constraints over boolean variables to be
defined. Paragraphs discussing implementation alternatives are marked “[Dis-
cussion]” and can be skipped on a first reading.

From the documentation in this paper we hope it is possible for you to
implement a fresh SAT-solver in your favorite language, or to grab the C++
version of MINISAT from the net and start modifying it to include new and
interesting ideas.

2 Application Programming Interface

We start by presenting MINISAT’s external interface, with which a user appli-
cation can specify and solve SAT-problems. A basic knowledge about SAT is
assumed (see for instance [MS96]). The types var, lit, and Vec for variables,
literals, and vectors respectively are explained in detail in section 4.

class Solver — Public interface
var newVar ()
bool addClause (Vec(lit) literals)
bool add. .. (...)
bool simplifyDB ()
bool solve ( Vec(lit) assumptions)
Vec(bool) model — If found, this vector has the model.

The “add...” method should be understood as a place-holder for additional
constraints implemented in an extension of MINISAT.

For a standard SAT-problem, the interface is used in the following way: Vari-
ables are introduced by calling new Var(). From these variables, clauses are built
and added by addClause(). Trivial conflicts, such as two unit clauses {z} and {7}
being added, can be detected by addClause(), in which case it returns FALSE.
From this point on, the solver state is undefined and must not be used further.
If no such trivial conflict is detected during the clause insertion phase, solve()
is called with an empty list of assumptions. It returns FALSE if the problem is
unsatisfiable, and TRUE if it is satisfiable, in which case the model can be read
from the public vector “model”.

The simplifyDB() method can be used before calling solve() to simplify the
set of problem constraints (often called the constraint database). In our imple-
mentation, simplifyDB() will first propagate all unit information, then remove
all satisfied constraints. As for addClause(), the simplifier can sometimes detect a



conflict, in which case FALSE is returned and the solver state is, again, undefined
and must not be used further.

If the solver returns satisfiable, new constraints can be added repeatedly to
the existing database and solve() run again. However, more interesting sequences
of SAT-problems can be solved by the use of unit assumptions. When passing
a non-empty list of assumptions to solve(), the solver temporarily assumes the
literals to be true. After finding a model or a contradiction, these assumptions
are undone, and the solver is returned to a usable state, even when solve() return
FALSE, which now should be interpreted as unsatisfiable under assumptions.

For this to work, calling simplifyDB() before solve() is no longer optional.
It is the mechanism for detecting conflicts independent of the assumptions —
referred to as a top-level conflict from now on — which puts the solver in an
undefined state. We wish to remark that the ability to pass unit assumptions to
solve() is more powerful than it might appear at first. For an example of its use,
see [ES03].

An alternative interface would be for solve() to return one of three values:
satisfiable, unsatisfiable, or unsatisfiable under assumptions. This is indeed a less
error-prone interface as there is no longer a pre-condition on the use of solve().
The current interface, however, represents the smallest modification of a non-
incremental SAT-solver. The early non-incremental version of SATZOO was made
compliant to the above interface by adding just 5 lines of code.

3 Overview of the SAT-solver

This article will treat the popular style of SAT-solvers based on the DPLL algo-
rithm [DLL62], backtracking by conflict analysis and clause recording (also re-
ferred to as learning) [MS96], and boolean constraint propagation (BCP) using
watched literals [MZ01].2 We will refer to this style of solver as a conflict-driven
SAT-solver.

The components of such a solver, and indeed a more general constraint solver,
can be conceptually divided into three categories:

¢ Representation. Somehow the SAT-instance must be represented by inter-
nal data structures, as must any derived information.

e Inference. Brute force search is seldom good enough on its own. A solver
also needs some mechanism for computing and propagating the direct im-
plications of the current state of information.

e Search. Inference is almost always combined with search to make the solver
complete. The search can be viewed as another way of deriving information.

A standard conflict-driven SAT-solver can represent clauses (with two literals or
more) and assignments. Although the assignments can be viewed as unit-clauses,
they are treated specially in many ways, and are best viewed as a separate type
of information.

The only inference mechanism used by a standard solver is unit propagation.
As soon as a clause becomes unit under the current assignment (all literals except

2 This includes SAT-solvers such as: ZCHAFF, LIMMAT, BERKMIN.
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one are false), the remaining unbound literal is set to true, possibly making
more clauses unit. The process is continued until no more information can be
propagated.

The search procedure of a modern solver is the most complex part. Heuris-
tically, variables are picked and assigned values (assumptions are made), until
the propagation detects a conflict (all literals of a clause have become false).
At that point, a so called conflict clause is constructed and added to the SAT
problem. Assumptions are then canceled by backtracking until the conflict clause
becomes unit, from which point this unit clause is propagated and the search
process continues.

MINISAT is extensible with arbitrary boolean constraints. This will affect the
representation, which must be able to store these constraints; the inference,
which must be able to derive unit information from these constraints; and the
search, which must be able to analyze and generate conflict clauses from the
constraints. The mechanism we suggest for managing general constraints is very
lightweight, and by making the dependencies between the SAT-algorithm and
the constraints implementation explicit, we feel it rather adds to the clarity of
the solver than obscures it.

Propagation. The propagation procedure of MINISAT is largely inspired by
that of CHAFF [MZ01]. For each literal, a list of constraints is kept. These are
the constraints that may propagate unit information (variable assignments) if
the literal becomes TRUE. For clauses, no unit information can be propagated
until all literals except one have become FALSE. Two unbound literals p and ¢ of
the clause are therefore selected, and references to the clause are added to the
lists of p and § respectively. The literals are said to be watched and the lists of
constraints are referred to as watcher lists. As soon as a watched literal becomes
TRUE, the constraint is invoked to see if information may be propagated, or to
select new unbound literals to be watched.

A feature of the watcher system for clauses is that on backtracking, no adjust-
ment to the watcher lists need to be done. Backtracking is therefore very cheap.
However, for other constraint types, this is not necessarily a good approach.
MINISAT therefore supports the optional use of undo lists for those constraints;
storing what constraints need to be updated when a variable becomes unbound
by backtracking.

Learning. The learning procedure of MINISAT follows the ideas of Marques-
Silva and Sakallah in [MS96]. The process starts when a constraint becomes
conflicting (impossible to satisfy) under the current assignment. The conflicting
constraint is then asked for a set of variable assignments that make it contradic-
tory. For a clause, this would be all the literals of the clause (which are FALSE
under a conflict). Each of the variable assignments returned must be either an
assumption of the search procedure, or the result of some propagation of a con-
straint. The propagating constraints are in turn asked for the set of variable
assignments that forced the propagation to occur, continuing the analysis back-
wards. The procedure is repeated until some termination condition is fulfilled,
resulting in a set of variable assignments that implies the conflict. A clause pro-
hibiting that particular assignment is added to the clause database. This learnt



clause must always, by construction, be implied by the original problem con-
straints.

Learnt clauses serve two purposes: they drive the backtracking (as we shall
see) and they speed up future conflicts by “caching” the reason for the conflict.
Each clause will prevent only a constant number of inferences, but as the recorded
clauses start to build on each other and participate in the unit propagation, the
accumulated effect of learning can be massive. However, as the set of learnt
clauses increase, propagation is slowed down. Therefore, the number of learnt
clauses is periodically reduced, keeping only the clauses that seem useful by some
heuristic.

Search. The search procedure of a conflict-driven SAT-solver is somewhat im-
plicit. Although a recursive definition of the procedure might be more elegant,
it is typically described (and implemented) iteratively. The procedure will start
by selecting an unassigned variable z (called the decision variable) and assume
a value for it, say TRUE. The consequences of x=TRUE will then be propa-
gated, possibly resulting in more variable assignments. All variables assigned as
a consequence of z is said to be from the same decision level, counting from 1
for the first assumption made and so forth. Assignments made before the first
assumption (decision level 0) are called top-level.

All assignments will be stored on a stack in the order they were made; from
now on referred to as the trail. The trail is divided into decision levels and is
used to undo information during backtracking.

The decision phase will continue until either all variables have been assigned,
in which case we have a model, or a conflict has occurred. On conflicts, the
learning procedure will be invoked and a conflict clause produced. The trail will
be used to undo decisions, one level at a time, until precisely one of the literals of
the learnt clause becomes unbound (they are all FALSE at the point of conflict).
By construction, the conflict clause cannot go directly from conflicting to a clause
with two or more unbound literals. If the clause remains unit for several decision
levels, it is advantageous to chose the lowest level (referred to as backjumping or
non-chronological backtracking [MS96]).

loop
propagate() - propagate unit clauses
if not conflict then
if all variables assigned then
return SATISFIABLE
else
decide() - pick a new variable and assign it
else
analyze() - analyze conflict and add a conflict clause
if top-level conflict found then
return UNSATISFIABLE
else
backtrack() — undo assignments until conflict clause is unit
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An important part of the procedure is the heuristic for decide(). Like CHAFF,
MINISAT uses a dynamic variable order that gives priority to variables involved
in recent conflicts.

Although this is a good default order, domain specific heuristics have success-
fully been used in various areas to improve the performance [Stri00]. Variable
ordering is a traditional target for improving SAT-solvers.

Activity heuristics. One important technique introduced by CHAFF [MZ01] is
a dynamic variable ordering based on activity (referred to as the VSIDS heuris-
tic). The original heuristic imposes an order on literals, but borrowing from
SATZOO, we make no distinction between p and p in MINISAT.

Each variable has an activity attached to it. Every time a variable occurs in a
recorded conflict clause, its activity is increased. We will refer to this as bumping.
After recording the conflict, the activity of all the variables in the system are
multiplied by a constant less than 1, thus decaying the activity of variables over
time. Recent increments count more than old. The current sum determines the
activity of a variable.

In MINISAT we use a similar idea for clauses. When a learnt clause is used
in the analysis process of a conflict, its activity is bumped. Inactive clauses are
periodically removed.

Constraint remowval. The constraint database is divided into two parts: the
problem constraints and the learnt clauses. As we have noted, the set of learnt
clauses can be periodically reduced to increase the performance of propagation.
Learnt clauses are used to crop future branches in the search tree, so we risk
getting a bigger search space instead. The balance between the two forces is
delicate, and there are SAT-instances for which a big learnt clause set is ad-
vantageous, and others where a small set is better. MINISAT’s default heuristic
starts with a small set and gradually increases the size.

Problem constraints can also be removed if they are satisfied at the top-level.
The API method simplifyDB() is responsible for this. The procedure is par-
ticularly important for incremental SAT-problems, where techniques for clause
removal build on this feature.

Top-level solver. Although the pseudo-code for the search procedure presented
above suffices for a simple conflict-driven SAT-solver, a solver strategy can im-
prove the performance. A typical strategy applied by modern conflict-driven
SAT-solvers is the use of restarts to escape from futile parts of the search tree.
In MINISAT we also vary the number of learnt clauses kept at a given time.
Furthermore, the solve() method of the API supports incremental assumptions,
not handled by the above pseudo-code.

4 Implementation

The following conventions are used in the code. Atomic types start with a lower-
case letter and are passed by value. Composite types start with a capital letter
and are passed by reference. Blocks are marked only by indentation level. The



class Vec(T) — Public interface class lit — Public interface
— Constructors: lit (var x)
Vec(). . - Global functions:
Vec(z'nt s¥ze) lit op - (lit p)
Vec(int size, T pad) bool sign (lit p)
- Size operations: int wvar (lit p)
int size 0 int indez (lit p)
void shrink (int nof_elems) —
void pop 0 class lbool - Public interface
void growTo (int size) lhool () lbool (bool x)
void growTo (int size, T pad) ~ Global functions:
void clear () Ibool op — (lbool x)
- Stack interface: - Global constants:
void push () lbool FALSE |, TRUE,, L
void push (T elem)
T last 0 —
class Queue(T) — Public interface
- Vector interface: Queue ()
T op[] (intindex) Lo
void insert (T x)
— Duplicatation: T  dequeue ()
void copyTo (Vec(T) copy) void clear ()
void moveTo (Vee(T) dest) int  size 0

Fig. 1. Basic abstract data types used throughout the code. The vector data type can
push a default constructed element by the push() method with no argument. The
moveTo() method will move the contents of a vector to another vector in constant
time, clearing the source vector. The literal data type has an indez() method which
converts the literal to a “small” integer suitable for array indexing. The var() method
returns the underlying variable of the literal, and the sign() method if the literal is
signed (FALSE for x and TRUE for 7).

bottom symbol | will always mean undefined; the symbol FALSE will be used
to denote the boolean false.

We will use, but not specify an implementation of, the following abstract data
types: Vee(T) an extensible vector of type T'; lit the type of literals containing
a special literal 1;; lbool for the lifted boolean domain containing elements
TRUE,, FALSE|, and ©1; Queue(T) a queue of type T. We also use var as
a type synonym for int (for implicit documentation) with the special constant
L yar- The interfaces of the abstract data types are presented in Figure 1.

4.1 The solver state

A number of things need to be stored in the solver state. Figure 2 shows the
complete set of member variables of the solver type of MINISAT. Together with
the state variables we define some short helper methods in Figure 3, as well as
the interface of VarOrder (Figure 4), explained in section 4.6.

The state does not contain a boolean “conflict” to remember if a top-level
conflict has been reached. Instead we impose as an invariant that the solver must
never be in a conflicting state. As a consequence, any method that puts the solver
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in a conflicting state must communicate this. Using the solver object after this
point is illegal. The invariant makes the interface slightly more cumbersome to
use, but simplifies the implementation, which is important when extending and
experimenting with new techniques.

4.2 Constraints

MINISAT can handle arbitrary constraints over boolean variables through the
abstraction presented in Figure 5. Each constraint type needs to implement
methods for constructing, removing, propagating and calculating reasons. In
addition, methods for simplifying the constraint and updating the constraint on
backtrack can be specified. We explain the meaning and responsibilities of these
methods in detail:

Constructor. The constructor may only be called at the top-level. It must
create and add the constraint to appropriate watcher lists after enqueu-
ing any unit information derivable under the current top-level assignment.
Should a conflict arise, this must be communicated to the caller.

Remove. The remove method supplants the destructor by receiving the
solver state as a parameter. It should dispose the constraint and remove it
from the watcher lists.

Propagate. The propagate method is called if the constraint is found in
a watcher list during propagation of unit information p. The constraint is
removed from the list and is required to insert itself into a new or the same
watcher list. Any unit information derivable as a consequence of p should be
enqueued. If successful, TRUE is returned; if a conflict is detected, FALSE is
returned. The constraint may add itself to the undo list of var(p) if it needs
to be updated when p becomes unbound.

Simplify. At the top-level, a constraint may be given the opportunity to
simplify its representation (returns FALSE) or state that the constraint is
satisfied under the current assignment and can be removed (returns TRUE).
A constraint must not be simplifiable to produce unit information or to be
conflicting; in that case the propagation has not been correctly defined.

Undo. During backtracking, this method is called if the constraint added
itself to the undo list of var(p) in propagate(). The current variable assign-
ments are guaranteed to be identical to that of the moment before propa-
gate() was called.

Calculate Reason. This method is given a literal p and an empty vector.
The constraint is the reason for p being true, that is, during propagation, the
current constraint enqueued p. The received vector is extended to include a
set of assignments (represented as literals) implying p. The current variable
assignments are guaranteed to be identical to that of the moment before
the constraint propagated p. The literal p is also allowed to be the special
constant 1 ;; in which case the reason for the clause being conflicting should
be returned through the vector.



class Solver

— Constraint database

Vec(Constr) constrs - List of problem constraints.

Vec(Clause) learnts - List of learnt clauses.

double clacinc - Clause activity increment — amount to bump with.

double cla_decay — Decay factor for clause activity.

- Variable order

Vec(double) activity - Heuristic measurement of the activity of a variable.

double variinc -~ Varable activity increment — amount to bump with.

double var_decay — Decay factor for variable activity.

VarOrder  order — Keeps track of the dynamic variable order.

— Propagation

Vec(Vec(Constr)) — For each literal ’p’, a list of constraints watching p’.
watches A constraint will be inspected when ’p’ becomes true.

Vee(Vec({Constr)) — For each variable ’z’, a list of constraints that need to
undos update when ’r’ becomes unbound by backtracking.

Queue(lit) propQ - Propagation queue.

— Assignments

Vec(lbool)  assigns - The current assignments indezed on variables.

Vece(lit) trail — List of assignments in chronological order.

Vec(int) trail lim -~ Separator indices for different decision levels in ’trail’.

Vec(Constr) reason — For each variable, the constraint that implied its value.

Vec(int) level — For each variable, the decision level it was assigned.

int root_level — Separates incremental and search assumptions.

Fig. 2. Internal state of the solver.

int  Solver.nVars() return assigns.size()

int  Solver.nAssigns() return trail.size()

int  Solver.nConstraints() return constrs.size()

int  Solver.nLearnts() return learnts.size()

lbool Solver.value(var x)  return assigns[x]

lbool Solver.value(lit p) return sign(p) ? —assigns[var(p)] : assigns[var(p)]

int  Solver.decisionLevel() return trail_lim.size()

Fig. 3. Small helper methods. For instance, nLearnts() returns the number of learnt
clauses.

class VarOrder — Public interface
VarOrder (Vec(lbool) ref_to_assigns, Vec(double) ref_to_activity)

void newVar() — Called when a new variable is created.

void update(var x) — Called when variable has increased in activity.

void updateAll()  — Called when all variables have been assigned new activities.
void undo(var x) - Called when variable is unbound (may be selected again).
var select() — Clalled to select a new, unassigned variable.

Fig. 4. Assisting ADT for the dynamic variable ordering of the solver. The constructor
takes references to the assignment vector and the activity vector of the solver. The
method select() will return the unassigned variable with the highest activity.
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class Constr
virtual void remove (Solver S) - must be defined
virtual bool propagate (Solver S, lit p) - must be defined
virtual bool simplify  (Solver S) - defaults to return false
virtual void undo (Solver S, lit p) — defaults to do nothing
(

virtual void calcReason (Solver S, lit p, Vec(lit) out_reason) — must be defined

Fig. 5. Abstract base class for constraints.

The code for the Clause constraint is presented in Figure 7. It is also used for
learnt clauses, which are unique in that they can be added to the clause database
while the solver is not at top-level. This makes the constructor code a bit more
complicated than it would be for a normal constraint.

Implementing the addClause() method of the
solver API is just a matter of calling Clause_-
new() and pushing the new constraint on the
“constrs” vector, storing the list of problem con-
straints. For completeness, we also display the
code for creating variables in the solver (Fig-

var Solver.newVar()

int index

watches .push
watches .push

ure 6). undos

There are a number of tricks for smart-coding reason .push(NULL)
that can be used in a C++ implementation of assigns .push(L)
Clause. In particularly the “lits” vector can be level push(-1)
implemented as an zero-sized array placed last activity .push(0)
in the class, and then extra memory allocated order .newVar()

for the clause to contain the data. We observed return index

a 20% speedup for this trick. Furthermore, mem-
ory can be saved by not storing activity for prob-
lem clauses.

Of the methods defining a constraint, propagate() should be the primary tar-
get for efficient implementation. The SAT-solver spends about 80% of the time
propagating, so the method will be called frequently. In SATZOO a performance
gain was achieved by remembering the position of the last watched literal and
start looking for a new literal to watch from that position. Further speedups
may be achieved by specializing the code for small clause sizes.

Fig. 6. Creates a new SAT
variable in the solver.

4.3 Propagation

Given the mechanism for adding constraints, we now move on to describe the
propagation of unit information on these constraints.

The propagation routine keeps a set of literals (unit information) that is to
be propagated. We call this the propagation queue. When a literal is inserted into
the queue, the corresponding variable is immediately assigned. For each literal
in the queue, the watcher list of that literal determines the constraints that may
be affected by the assignment. Through the interface described in the previous
section, each constraint is asked by a call to its propagate() method if more unit
information can be inferred, which will then be enqueued. The process continues
until either the queue is empty or a conflict is found.

10



class Clause : public Constr

bool learnt
float activity
Vec(lit) lits

— Constructor — creates a new clause and adds it to watcher lists:
static bool Clause_new(Solver S, Vec(lit) ps, bool learnt, Clause out_clause)
“Implementation in Figure 8”

— Learnt clauses only:
bool locked(Solver S)
return S.reason[var(lits[0])] == this

— Constraint interface:

void remove(Solver S)
removeElem (this, S.watches[index(-lits[0])])
removeElem (this, S.watches[index(-lits[1])])
delete this

bool simplify(Solver S) — only called at top-level with empty prop. queue
intj=0
for (int i=0;1 < lits.size(); i++)
if (S.value(lits[i]) == TRUE.)
return TRUE
else if (S.value(lits[i]) == 1)
lits[j++] = lits[i] — false literals are not copied (only occur for i > 2)
lits.shrink(lits.size() — j)
return FALSE

bool propagate(Solver S, lit p)
- Make sure the false literal is lits[1]:
if (lits[0] == —p)
lits[0] = lits[1], lits[1] = —p

— If Oth watch is true, then clause is already satisfied.

if (S.value(lits[0]) == TRUE,)
S.watches[indez (p)].push(this) — re-insert clause into watcher list
return TRUE

— Look for a new literal to watch:
for (inti=2;1 < size(); i++)
if (S.value(lits[i]) != FALSE,)
lits[1] = lits][i], lits[i] = —p
S.watches[indez (-lits[1])].push(this) — insert clause into watcher list
return TRUE

— Clause is unit under assignment:
S.watches[indez (p)].push(this)
return S.enqueue(lits[0], this) - enqueue for propagation

void calcReason(Solver S, lit p, vec(lit) out_reason)
- invariant: (p == L) or (p == lits[0])
for (inti= ((p==1)70:1);i< size(); i++)
out_reason. push (-lits[i]) — invariant: S.value(lits[i]) == FALSE |
if (learnt) S.claBumpActivity(this)

Fig. 7. Implementation of the Clause constraint.
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bool Clause_new(Solver S, Vec(lit) ps, bool learnt, Clause out_clause)
out_clause = NULL

— Normalize clause:

if (!learnt)
if ("any literal in ps is true”) return TRUE
if ("both p and —p occurs in ps”) return TRUE
"remove all false literals from ps”
"remove all duplicates from ps”

if (ps.size() == 0)

return FALSE
else if (ps.size() == 1)

return S.enqueue(ps[0]) — unit facts are enqueuved
else

— Allocate clause:

Clause ¢ = new Clause

ps.moveTo(c.lits)

clearnt = learnt
c.activity =0 — only relevant for learnt clauses

if (learnt)
— Pick a second literal to watch:
”Let max_ be the index of the literal with highest decision level”
c.lits[1] = ps[max_i], c.lits[max_i] = ps[1]

— Bumping:
S.claBumpActivity(c) - newly learnt clauses should be considered active
for (int i = 0; i < ps.size(); i++)

S.varBumpActivity(ps[i]) - variables in conflict clauses are bumped

- Add clause to watcher lists:
S.watches[indez (—c.lits[0])]. push(c)
S.watches[indez (—c.lits[1])]. push(c)
out_clause = ¢

return TRUE

Fig. 8. Constructor function for clauses. Returns FALSE if top-level conflict is detected.
‘out_clause’ may be set to NULL if the new clause is already satisfied under the current
top-level assignment. Post-condition: 'ps’ is cleared. For learnt clauses, all literals will
be false except ‘lits[0]’ (this by design of the analyze() method). For the propagation
to work, the second watch must be put on the literal which will first be unbound by
backtracking. (Note that none of the learnt-clause specific things needs to be done for
a user defined constraint type.)
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An implementation of this procedure is displayed in Figure 9. It starts by
dequeuing a literal and clearing the watcher list for that literal by moving it to
“tmp”. The propagate method is then called for each constraint of “tmp”. This
will re-insert watches into new lists. Should a conflict be detected during the
traversal of “tmp”, the remaining watches will be copied back to the original
watcher list, and the propagation queue cleared.

The method for enqueuing unit information is relatively straightforward.
Note that the same fact can be enqueued several times, as it may be prop-
agated from different constraints, but it will only be put on the propagation
queue once.

It may be that later enqueuings have a “better” reason (determined heuristi-
cally) and a small performance gain was achieved in SATZOO by changing reason
if the new reason was smaller than the previously stored. The changing affects
the conflict clause generation described in the next section.

4.4 Learning

This section describes the conflict-driven clause learning. It was first described
in [MS96] and is one of the major advances of SAT-technology in the last decade.
We describe the basic conflict-analysis algorithm by an example. Assume
the database contains the clause {z,y, 2} which just became unsatisfied during
propagation. This is our conflict. We call ZAGTAZ the reason set of the conflict.
Now z is false because T was propagated from some constraint. We ask that
constraint to give us the reason for propagating T (the calcReason() method).
It will respond with another conjunction of literals, say u A v . These were the
variable assignment that implied Z. The constraint may in fact have been the
clause {@,v,Z}. From this little analysis we know that u A v AFAZ must also
lead to a conflict. We may prohibit this conflict by adding the clause {w,7,y, 2}
to the clause database. This would be an example of a learnt conflict clause.

In the example, we picked only one literal and analyzed it one step. The
process of expanding literals with their reason sets can be continued, in the
extreme case until all the literals of the conflict set are decision variables (which
were not propagated by any constraints). Different learning schemes based on
this process have been proposed. Experimentally the “First Unique Implication
Point” (First UIP) heuristic has been shown effective [ZM01]. We will not give the
definition of UIPs here, but just state the algorithm: In a breadth-first manner,
continue to expand literals of the current decision level, until there is just one
left.

In the code for analyze(), displayed in Figure 10, we make use of the fact
that a breadth-first traversal can be achieved by inspecting the trail backwards.
Especially, the variables of the reason set of p is always before p in the trail. Fur-
thermore, in the algorithm we initialize p to L;;, which will make calcReason()
return the reason for the conflict.

Assuming z to be the unit information that causes the conflict, an alternative
implementation would be to calculate the reason for T and just add z to that set.
The code would be slightly more cumbersome but the contract for calcReason()
would be simpler, as we no longer need the special case for L ;.
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Constr Solver.propagate()

while (propQ.size() > 0)
lit p = propQ.dequeue() - 'p’ is now the enqueued fact to propagate
Vec(Constr) tmp — ’tmp’ will contain the watcher list for p’
watches[indez (p)].moveTo(tmp)

for (int i = 0; i < tmp.size(); i++)
if (Itmp[i].propagate(this, p))
— Constraint is conflicting; copy remaining watches to 'watches[p]’
— and return constraint:
for (int j = i+1; j < tmp.size(); j++)
watches[indez (p)].push(tmplj])
propQ.clear()
return tmpli]
return NULL

bool Solver.enqueue(lit p, Constr from = NULL)

if (value(p) != 1)
if (value(p) == FALSEL)
- Conflicting enqueued assignment
return FALSE
else
— Ezisting consistent assignment — don’t enqueue
return TRUE
else
- New fact, store it
assigns [var(p)] = lbool(!sign(p))
level  [var(p)] = decisionLevel()
reason [var(p)] = from
trail.push(p)

propQ.insert(p)
return TRUE

Fig. 9. propagate(): Propagates all enqueued facts. If a conflict arises, the conflicting
clause is returned, otherwise NULL. enqueue(): Puts a new fact on the propagation
queue, as well as immediately updating the variable’s value in the assignment vector. If
a conflict arises, FALSE is returned and the propagation queue is cleared. The parameter
‘from’ contains a reference to the constraint from which 'p’ was propagated (defaults
to NULL if omitted).

Finally, the analysis not only returns a conflict clause, but also the back-
tracking level. This is the lowest decision level for which the conflict clause is
unit. It is advantageous to backtrack as far as possible [MS96], and is referred
to as back-jumping or non-chronological backtracking in the literature.

4.5 Search

The search method in Figure 13 works basically as described in section 3 but
with the following additions:

Restarts. The first argument of the search method is “nof_conflicts”. The
search for a model or a contradiction will only be conducted for this many
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void Solver.analyze(Constr confl, Vec(lit) out_learnt, Int out_btlevel)

Vee(bool) seen(nVars(), FALSE)

int counter = 0
lit P = Lyt
Vec(lit) p-reason
out_learnt.push() — leave room for the asserting literal
out_btlevel = 0
do
p-reason.clear()
confl. calcReason(this, p, p_reason) - invariant here: confl |I= NULL

- TRACE REASON FOR P:
for (int j = 0; j < p_reason.size(); j++)
lit q = p-reason][j]
if (Iseenf[var(q)])
seen[var(q)] = TRUE
if (level[var(q)] == decisionLevel())
counter—++
else if (level[var(q)] > 0) - ezclude variables from decision level 0
out learnt.push(—q)
out_btlevel = maz(out_btlevel, level[var(q)])

— SELECT NEXT LITERAL TO LOOK AT:

do
p = trail.last()

confl = reason[var(p)]
undoOne()
while (!seen[var(p)])
counter——
while (counter > 0)
out_learnt[0] = —p

Fig.10. Analyze a conflict and produce a reason clause. Pre-conditions: (1)
‘out_learnt’ is assumed to be cleared. (2) Current decision level must be greater
than root level. Post-conditions: (1) ’out_learnt[0]’ is the asserting literal at level
‘out_btlevel’. Effect: Will undo part of the trail, but not beyond last decision level.

void Solver.record( Vec(lit) clause)

Clause c — will be set to created clause, or NULL if ’clause[]’ is unit
Clause_new (this, clause, TRUE, c) — cannot fail at this point
enqueue(clause[0], c) - cannot fail at this point

if (c != NuLL) learnts.push(c)

Fig. 11. Record a clause and drive backtracking. Pre-condition: 'clause[0]’ must contain
the asserting literal. In particular, ’clause[]’ must not be empty.
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conflicts. If failing to solve the SAT-problem within the bound, all assump-
tions will be canceled and L returned. The surrounding solver strategy will
then restart the search, possibly with a new set of parameters.

Reduce. The second argument, “nof_learnts”, sets an upper limit on the
number of learnt clauses that are kept. Once this number is reached, re-
duceDB() is called. Clauses that are currently the reason for a variable as-
signment are said to be locked and cannot be removed by reduceDB(). For
this reason, the limit is extended by the number of assigned variables, which
approximates the number of locked clauses.

Parameters. The third argument to the search method groups some tuning
constants. In the current version of MINISAT, it only contains the decay
factors for variables and clauses.

Root-level. To support incremental SAT, the concept of a root-level is in-
troduced. The root-level acts a bit as a new top-level. Above the root-level
are the incremental assumptions passed to solve() (if any). The search pro-
cedure is not allowed to backtrack above the root-level, as this would change
the incremental assumptions. If we reach a conflict at root-level, the search
will return FALSE.

A problem with the approach presented here is conflict clauses that are
unit. For these, analyze() will always return a backtrack level of 0 (top-
level). As unit clauses are treated specially, they are never added to the
clause database. Instead they are enqueued as facts to be propagated (see
the code of Clause_new()). There would be no problem if this was done
at top-level. However, the search procedure will only undo until root-level,
which means that the unit fact will be enqueued there. Once search() has
solved the current SAT-problem, the surrounding solver strategy will undo
any incremental assumption and put the solver back at the top-level. By this
the unit clause will be forgotten, and the next incremental SAT problem will
have to infer it again.

A solution to this is to store the learnt unit clauses in a vector and
re-insert them at top-level before the next call to solve(). The reason for
omitting this in MINISAT is that we have not seen any performance gain by
this extra handling in our applications [ES03,CS03]. Simplicity thus dictates
that we leave it out of the presentation.

Simplify. Provided the root-level is 0 (no assumptions were passed to solve())
the search will return to the top-level every time a unit clause is learnt. At
that point it is legal to call simplifyDB() to simplify the problem constraints
according to the top-level assignment. If a stronger simplifier than presented
here is implemented, a contradiction may be found, in which case the search
should be aborted. As our simplifier is not stronger than normal propaga-
tion, it can never reach a contradiction, so we ignore the return value of

simplify().
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void Solver.undoOne()

lit p = trail.last()

var x = var(p)

assigns [x] = L

reason [x] = NULL

level [x]=-1

order.undo(x)

trail.pop()

while (undos[x].size() > 0)
undos(x].last().undo(this, p)

bool Solver.assume(lit p)

trail_lim.push(trail.size())
return enqueue(p)

void Solver.cancel()
int ¢ = trail.size() — trail_lim.last()
for (; ¢ !=0; c——)
undoOne()
trail_lim.pop()

void Solver.cancelUntil(int level)

d .
undos[x]. pop() while (decisionLevel() > level)

cancel()

Fig. 12. assume(): returns FALSE if immediate conflict. Pre-condition: propaga-
tion queue is empty. undoOne(): unbinds the last variable on the trail. cancel():
reverts to the state before last push(). Pre-condition: propagation queue is empty.
cancelUntil(): cancels several levels of assumptions.

4.6 Activity heuristics

The implementation of activity is shown in Figure 14. Instead of actually multi-
plying all variables by a decay factor after each conflict, we bump variables with
larger and larger numbers. Only relative values matter. Eventually we will reach
the limit of what is representable by a floating point number. At that point, all
activities are scaled down.

In the VarOrder data type of MINISAT, the list of variables is kept sorted
on activity at all time. The backtracking will always accurately choose the most
active variable. The original suggestion for the VSIDS dynamic variable ordering
was to sort periodically.

The polarity of a literal is ignored in MINISAT. However, storing the latest
polarity of a variable might improve the search when restarts are used, but it
remains to be empirically supported. Furthermore, the interface of VarOrder
can be used for other variable heuristics. In SATZOO, an initial static variable
order computed from the clause structure was particularly successful on many
problems.

4.7 Constraint removal

The methods for reducing the set of learnt clauses as well as the top-level sim-
plification procedure can be found in Figure 15.

When removing learnt clauses, it is important not to remove so called locked
clauses. Locked clauses are those participating in the current backtracking branch
by being the reason (through propagation) for a variable assignment. The reduce
procedure keeps half of the learnt clauses, except for those which have decayed
below a threshold limit. Such clauses can occur if the set of active constraints is
very small.

Top-level simplification can be seen as a special case of propagation. Since
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lbool Solver.search(int nof_conflicts, int nof_learnts, SearchParams params)
int conflictC = 0
var_decay = 1 / params.var_decay
cla_decay = 1 / params.cla_decay
model. clear()

loop
Constr confl = propagate()
if (confl |= NuLL)
— CONFLICT

conflictC++
Vec(lit) learnt_clause
int backtrack level
if (decisionLevel() == root_level)
return FALSE |
analyze(confl, learnt_clause, backtrack_level)
cancel Until(maz (backtrack level, root_level))
record (learnt_clause)
decayActivities()
else
- NO CONFLICT

if (decisionLevel() == 0)
— Simplify the set of problem clauses:
simplifyDB() — our simplifier cannot return false here

if (learnts.size()—nAssigns() > nof_learnts)
— Reduce the set of learnt clauses:
reduceDB()

if (nAssigns() == nVars())
— Model found:
model. growTo(nVars())
for (int i = 0; i < nVars(); i++)
model[i] = (value(i) == TRUE)
cancel Until(root_level)
return TRUE |

else if (conflictC > nof_conflicts)
— Reached bound on number of conflicts:

cancel Until(root_level) — force a restart
return |

else
— New variable decision:
lit p = lit(order.select()) — may have heuristic for polarity here
assume(p) — cannot return false

Fig. 13. Search method. Assumes and propagates until a conflict is found, from which
a conflict clause is learnt and backtracking performed until search can continue. Pre-
condition: root_level == decisionLevel().
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void Solver.varBumpActivity(var x)
if ((activity[x] += var_inc) > 1e100)
varRescaleActivity()

void Solver.claBumpActivity(Clause c)
votid Solver.claDecayActivity()
void Solver.claRescaleActivity()

order.update(x) — Similarly implemented.

void Solver.varDecayActivity()

var_inc *— var_decay void Solver.decayActivities()

varDecayActivity()

void Solver.varRescaleActivity() claDecayActivity()

for (int i = 0;1 < nVars(); i++)
activity[i] *= 1e-100

var_inc *= 1e-100

Fig. 14. Bumping of variable and clause activities.

it is performed under no assumption, anything learnt can be kept forever. The
freedom of not having to store derived information separately, with the ability
to undo it later, makes it easier to implement stronger propagation.

4.8 Top-level solver

The method implementing MINISAT’s top-level strategy can be found in Figure
16. Tt is responsible for making the incremental assumptions and setting the root
level. Furthermore, it completes the simple backtracking search with restarts,
which are performed less and less frequently. After each restart, the number of
allowed learnt clauses is increased.

The code contains a number of hand-tuned constants that have shown to per-
form reasonable on our applications [ES03,CS03]. The top-level strategy, how-
ever, is a productive target for improvements (possibly application dependent).
In SATZOO, the top-level strategy contains an initial phase where a static vari-
able ordering is used.

5 Conclusions and Related Work

By this paper, we have provided a minimal reference implementation of a modern
conflict-driven SAT-solver. Despite the abstraction layer for boolean constraints,
and the lack of more sophisticated heuristics, the performance of MINISAT is
comparable to state-of-the-art SAT-solvers. We have tested MINISAT against
ZCHAFF and BERKMIN 5.61 on 177 SAT-instances. These instances were used to
tune SATZOO for the SAT 2003 Competition. As SATZOO solved more instances
and series of problems, ranging over all three categories (industrial, handmade,
and random), than any other solver in the competition, we feel that this is a
good test-set for the overall performance. No extra tuning was done in MINISAT;
it was just run once with the constants presented in the code. At a time-out of
10 minutes, MINISAT solved 158 instances, while ZCHAFF solved 147 instances
and BERKMIN 157 instances.

Another approach to incremental SAT and non-clausal constraints was pre-
sented by Aloul, Ramani, Markov, and Sakallah in their work on SATIRE and
PBS [WKS01,ARMS02]. Our implementation differs in that it has a simpler
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void Solver.reduceDB()
int i, ]
double lim = cla_inc / learnts.size()
sortOnActivity (learnts)
for (i=j=0; i < learnts.size()/2; i++)
if (llearnts[i].locked (this))
learnts[i].remove(this)
else
learnts[j++] = learnts]i]
for (; i < learnts.size(); i++)
if (llearnts[i].locked (this)
&& learnts[i]. activity () < lim)
learnts[i].remove(this)
else

bool Solver.simplifyDB()

if (propagate() != NULL)
return FALSE

for (int type = 0; type < 2; type++)
Vee(Constr) cs = type 7
(Vee(Constr))learnts : constrs
intj =0
for (inti=0;1i < cs.size(); i++)
if (cs[i].simplify(this))
csli].remove(this)
else
cs[j++] = csli]
cs.shrink(cs.size()—j)
return TRUE

learnts[j++] = learnts]i]
learnts.shrink(i — j)

Fig. 15. reduceDB(): Remove half of the learnt clauses minus some locked clauses.
A locked clause is a clauses that is reason to a current assignment. Clauses below a
certain lower bound activity are also be removed. simplifyDB(): Top-level simplify
of constraint database. Will remove any satisfied constraint and simplify remaining
constraints under current (partial) assignment. If a top-level conflict is found, FALSE is
returned. Pre-condition: Decision level must be zero. Post-condition: Propagation
queue is empty.

bool Solver.solve( Vee(lit) assumps)

SearchParams params(0.95, 0.999)
double nof_conflicts = 100

double nof_learnts = nConstraints()/3
lbool  status =1

~ PUSH INCREMENTAL ASSUMPTIONS:
for (int i = 0; 1 < assumps.size(); i++)
if (lassume(assumps[i]) || propagate() = NULL)
cancel Until(0)
return FALSE
root_level = decisionLevel()

—~ SOLVE:

while (status == 1)
status = search((int)nof_conflicts, (int)noflearnts, params)
nof_conflicts *= 1.5

nof_learnts *= 1.1
cancelUntil(0)
return status == TRUE_

Fig. 16. Main solve method. Pre-condition: If assumptions are used, simplifyDB()
must be called right before using this method. If not, a top-level conflict (resulting in a
non-usable internal state) cannot be distinguished from a conflict under assumptions.
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notion of incrementality, and that it contains a well documented interface for
non-clausal constraints.

Finally, a set of reference implementations of modern SAT-techniques is
present in the OPENSAT project.® However, the project aim for completeness
rather than minimal exposition, as we have chosen in this paper.

6 Exercises

1. Write the code for an AtMost constraint. The constraint is satisfied if at
most n out of m specified literals are true.

2. Implement a generator for (generalized) pigeon-hole formulas using the new
constraints. The generator should take three arguments: number of pigeons,
number of holes, and hole capacity. Each pigeon must reside in some pigeon-
hole. No hole may contain more pigeons than its capacity.

3. Make an incremental version that adds one pigeon to the problem at a time
until the problem becomes unsatisfiable.
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Appendix — What is missing from Satzoo?

In order to reduce the size of MINISAT to a minimum, all non-essential parts of
SATZOO/SATNIK were left out. Since SATZOO won two categories of the SAT
2003 Competition, we chose to present the missing parts here for completeness.

Initial strategies:

e Burst of random variable orders. Before anything else, SATZOO runs several
passes of about 10-100 conflicts each with the variable order initiated to
random. For satisfiable problems, SATZOO can sometimes stumble upon the
solution by this strategy. For hard (typically unsatisfiable) problems, impor-
tant clauses can be learnt in this phase that is outside the ”local optimum”
that the activity driven variable heuristic will later get stuck in.

e Static variable ordering. The second phase of SATZOO is to compute a static
variable ordering taking into account how the variables of different clauses
relates to each other (see Figure 17). Variables often occurring together in
clauses will be put close in the variable order. SATZOO uses this static or-
dering for at least 5000 conflicts and does not stop until progress is halted
severely. The static ordering often counters the effect of ”shuffling” the prob-
lem (changing the order of clauses). The authors believe this phase to be the
most important feature left out of MINISAT, and an important part of the
suiccess of SATZOO in the competition.

Extra variable decision heuristics:

e Variable of recent importance. Inspired by the SAT-solver BERKMIN, occa-
sionally variables from recent (unsatisfied) recorded clauses are picked.

e Random. About 1% of the time, a random variable is selected for branching.
This simple strategy seems to crack some extra problems without incurring
any substantial overhead for other problems. Give it a try!

Other:

e Equivalent variable substitution. The binary clauses are checked for cyclic
implications. If a cycle is found, a representative is selected and all other
variables in the cycle is replaced by this representative in the clause database.
This yields a smaller database and fewer variables. The simplification is done
periodically, but is most important in the initial phase (some problems can
be very redundant).

e Garbage collection. SATZOO implements its own memory management which
allows clauses to be stored more compactly.

e ()-1-programming. Pseudo-boolean constraints are supported by SATZOO.
This can of course easily be added to MINISAT through the constraint in-
terface.

* The provided code currently has no further motivation beyond the authors’ intuition.
Indeed it was added as a quick hack two days before the competition.
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void Solver.static VarOrder()

— CLEAR ACTIVITY:
for (int i = 0; 1 < nVars(); i++) activity[i] = 0

— DO SIMPLE VARIABLE ACTIVITY HEURISTIC:
for (int i = 0; i < clauses.size(); i++)
Clause ¢ = clauses]i]
double add = pow2(—size(c))
for (int j = 0; j < size(c); j++) activity[var(c[j])] += add

— CALCULATE THE INITIAL "HEAT” OF ALL CLAUSES:

Vee( Vec(int)) occurs(2*nVars()) — Map literal to list of clause indices
Vec(Pair(double,int)) heat(clauses.size()) — Pairs of heat and clause index
for (int i = 0; i < clauses.size(); i++)

Clause ¢ = clausesi]

double sum = 0

for (int j = 0; j < size(c); j++)
occurs[indez(c[j])].push (i)
sum += activity[var(c[j])]

heat[i] = Pair_new(sum, i)

— BUMP HEAT FOR CLAUSES WHOSE VARIABLES OCCUR IN OTHER HOT CLAUSES:
double iter size = 0
for (int i = 0; i < clauses.size(); i++)
Clause c = clausesli]
for (int j = 0; j < size(c); j++) iter_size += occurs[indez(c[j])].size()
int iterations = min((int)(((double)literals / iter_size) * 100), 10)
double disapation = 1.0 / iterations
for (int ¢ = 0; ¢ < iterations; c++)
for (int i = 0;1 < clauses.size(); i++)
Clause ¢ = clauses][i]
for (int j = 0; j < size(c); j++)
Vec(int) os = occurs[indez(c[j])]
for (int k = 0; k < os.size(); k++)
heat[i].fst += heat[os[k]].fst * disapation

— SET ACTIVITY ACCORDING TO HOT CLAUSES:
sort(heat)
for (int i = 0; i < nVars(); i++) activity[i] = 0

double extra = 1e200
for (int i = 0; i < heat.size(); i++)
Clause& c = clauses|heat][i].snd]
for (int j = 0; j < size(c); j++)
if (activity[var(c[j])] == 0)
activity[var(c[j])] = extra
extra *= 0.995

order.updateAll()
var_inc = 1

Fig. 17. The static variable ordering of SATZOO. The code is defined only for clauses,
not for arbitrary constraints. It must be adapted before it can be used in MINISAT.
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